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(ABSTRACT

This thesis takes five FORTRAN IV programs from "Com-

puter Programs for Computational Assistance in the Study

of Linear Control Theoryl' by.__ _ . .d JHne# and translates

them into a microcomputer BASIC language to run on an inex-

pensive microcomputer system. Three of the five programs are

state variable programs. They are BASMAT for basic matrix

manipulation, RTRESP for rational time response, and GTRESP

for graphical time response. Two are transfer function pro-

grams, FRESP for frequency response and RTLOC for root locus.

A user's guide and example are included for each.

A final example is used to demonstrate the utility of

the two transfer function programs as an aid to direct

digital design in the w'-plane.
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I. INTRODUCTION

The purpose of this thesis is two fold. First, it

is to show that standard computer programs useful in the study

of linear control theory may be adapted to run on an inex-

pensive home/microcomputer. To demonstrate this, five

programs were chosen from [Ref. 1], three state variable

programs and two transfer function programs. The three state

variable programs are BASMAT, a basic matrix manipulation

program, RTRESP, a rational time response program, and GTRESP,

a graphical time response program. The two transfer function

programs are FRESP, a frequency response program, and RTLOC,

a root locus program. These programs as they appear in [Ref.

1] are written in basic FORTRAN IV language to be run on

a main frame computer system utilizing standard graphics

subroutines. These programs were modified and rewritten in

a microcomputer BASIC language which is an interpreted

language. Generally these programs are limited to systems

of 10th order. It is felt that this limitation is more than

acceptable for the purposes of this thesis. Also no major

effort has been made to analyze or improve the efficiency of

the numerical methods used. An effort of this type is

advised if these programs are to be modified for higher

order systems.
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The second part of this thesis investigates the methods

and relationships involved in direct digital design in the

w'-plane. The two transfer function programs adapted to run

on a microcomputer from the first part of this thesis, FRESP

and RTLOC, are used to aid in this investigation.

Section II summarizes the common problems and consi-

derations involved in the translation of the five programs

to be run on a microcomputer system. Section III describes

the three state variable programs, BASMAT, RTRESP, and

GTRESP, and gives an example of their use and output.

Section IV is similar to section III and describes the two

transfer function programs, FRESP and RTLOC.

Section V deals with the w'-plane. Subsection A gives

some background on the w'-plane and subsection B provides a

simple example using the two transfer function programs to

compare the s and w' planes. Subsection C develops templates

of some constant parameters in the w'-plane. Subsection D

ends the section with a more involved example.

Section VI provides some conclusions and recommendations.

8
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II. TRANSLATION CONSIDERATIONS

The five programs in this thesis, BASMAT, RTRESP, GTRESP,

FRESP, and RTLOC, were translated directly from programs of

the same name in [Ref. 1]. These programs were written in

the basic FORTRAN IV computer language, a compiled language

designed to run on a main frame or mini computer system. In

the first part of this thesis these programs are translated

into a microcomputer BASIC language adapted to run on the

microcomputer system described in Appendix A.

*" In general the translation from FORTRAN IV to the micro-

computer BASIC used posed no serious problems. Even though

the BASIC language used is by necessity an abridged version

of the BASIC language found on larger more expensive systems,

it was extensive enough to provide the necessary commands

for these programs.

The input portion of the programs were rewritten to be

interactive for convenient keyboard entry of problem para-

meters eliminating input formatting errors. The programs

requiring more extensive input were given the added capability

of saving and retrieving a problem description from a disk

file for the user's convenience.

Unlike FORTRAN IV the BASIC used does not have complex

math capabilities. Therefore, mathematical operations on

p!



complex quantities were programed separately for the real and

imaginary parts.

Another important difference in the languages affecting

translation is that BASIC has no provision for local variables.

All variables in the main program and all subroutines are

global. This caused some bookkeeping problems in translating

subroutines to prevent undesired side effects. Another compli-

cation was that FORTRAN IV considers the first four characters

of a variable name for identification of that unique variable.

The BASIC used considers only the first two. This further

complicated the bookkeeping of variables and resulted in

variable names being assigned just because they were different

from the rest and with no relation to the quantity represented.

The output routines were written to conform as close as

possible to the FORTRAN IV version. Since the microcomputer

system used is limited to eighty columns on eight and a half

inch wide paper, provisions were made within the program to

automatically switch to a condensed character font when

necessary to output greater than eighty characters per line.

The programs requiring graphical output created some

unique problems. First, no standard library subroutines for

graphics as used in the FORTRAN IV programs were available

on the microcomputer system used. As a result all graphics

routines had to be developed for the system used. Also the

appropriate variables were redimensioned giving consideration

to the resolution of the graphics available on the

10



microcomputer system to optimize the program somewhat.

Secondly, although it is possible to mix graphics and text

on the microcomputer system, it is not done in a straight for-

ward manner and utilizes extra memory. For memory considera-

tions and convenience it was decided to provide sufficient

information for interpretation of the graphical output

below each graph. It is felt that this method is satisfac-

tory and creates little inconvenience to the user. To

enhance the interpretation of the graphical output much

time and effort was devoted to developing plotting routines

to display the data in relation to axes labeled with tic-marks

and boundaries of integer vice fractional values.

A major obstacle that was overcome was the identification

and correction of a memory management problem unique to the

microcomputer system used. This problem affected only those

programs requiring graphical output. The essence of the

problem was due to the size of the programs and the number

of variables used, parts of the program and stored variables

were being over written in memory by the graphics routines.

This problem was finally solved by making appropriate changes

in the memory management scheme. For a more detailed explana-

tion of the solution see Appendix A.
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III. STATE VARIABLE PROGRAMS

The three state variable programs discussed in this sec-

tion are modified versions of the programs of the same names

found in [Ref. 1]. These programs may be used as tools for

the analysis and design of linear control systems expressed

in the following state variable form:

j(t) Ax(t) + bu(t)

u(t) = K[r(t) - (t)]

T
y(t) T(t)

The Basic Matrix program (BASMAT) described in part A

of this section is used to compute the determinant, inverse,

characteristic polynomial, and eigenvalues of the square

matrix A. It is also used to determine the resolvent matrix
-1

(sI-A) and state transition matrix exp(At).

The Rational Time Response program (RTRESP), described

in part B, is used to determine a closed form expression

for the time response of a system. The input function r(t)

is required to have a rational time response and no repeated

eigenvalues are allowed in the combination of the system

and input.

The Graphical Time Response program (RTRESP), described

in part C, is used to produce a graphical display of the time

response of a system to an arbitrary input.

12



RTRESP and GTRESP can be used to study open loop systems

by letting K equal zero and unforced systems by letting r(t)

equal zero.

13
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A. BASMAT

1. Basic Matrix Program (BASMAT)

a. Introduction

When done by hand, matrix manipulations can be

quite tedious and the chances of an error being made are

great. In the study of linear state variable analysis, a

computer program to do these manipulations is almost

essential. It can do the necessary manipulations much more

quickly and accurately and allow the user to devote his

time and ener:gy to design and analysis.

b. Description of Program

BASMAT (Ref. 1: pp. 7,8] takes a matrix A,

and computes the determinant of A (det A), the inverse of

k (A - ), thr characteristic polynomial (det(sI-A)), and

eigenvalues of A (Xi)as well as the resolvent matrix

(s) (sI-A)

and the state transition matrix

(t) =exp(At)

The state transition matrix is expressed as matrix coeffi-

cients times the natural modes exp(Xt) with the complex

eigenvalues expressed as damped sine and cosine terms. The

resolvent matrix is written as

O(s) = adj(sI-A)/det(sI-A)

and the matrix numerator, adj(sI-A), is output as matrix

coefficients of powers of s so that it takes the form

adj(sI-A) = F 1 + F2s + ... + F Ns N-

14



The BASMAT program interactively accepts input

of a matrix and calls subroutines to perform the appro-

priate calculations. The subroutines used are CHREQ, CHREQA,

PROOT, DET, SIMEQ, and STMST. These subroutines are listed

below with a brief description.

CHREQ. This subroutine is used to determine the

characteristic polynomial det(sI-A), and the resolvent

matrix (s-) - for the matrix A. The Leverrier algorithm

is used to compute the resolvent matrix

(s) = (sI-A)-1

in the form N

Z R.sN - i

i=1 1

)= D(s)

where D(s) is the characteristic polynomial det(sI-A).

The coefficients of the characteristic polynomial

are determined by subroutine CHREQA.

CHREQA. This subroutine is called by CHREQ to

determine the characteristic polynomial, det(sj-A), for the

A matrix. The principal-minor method is used.

PROOT. This subroutine uses a modified Bair-

stow method for root extraction to determine the roots of a

polynomial with real coefficients. It is used to calculate

the eigenvalues of the A matrix.

DET. This subroutine computes the determinant

of a matrix. A gauss elimination method to place the matrix

15
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in upper triangular form is used. It is called by CHREQA to

calculate sub-determinants.

SIMEQ. This subroutine is used in the FORTRAN

version of BASMAT in [Ref. 1: pp. 7,8] to determine the

inverse of the A matrix. In the BASIC version a machine

language subroutine (Ref. 2] is substituted for speed

and convenience.

STMST. This subroutine is used to compute the

state transition matrix

(t) = exp(At)

for a matrix A. It uses the Sylvester Expansion Theorem.

Eigenvalues of the A matrix must be provided. This routine

can not handle duplicate eigenvalues.

c. Program Translation Problems

See section II, Translation Considerations.

2. BASMAT User's Guide

This program occupies about 7k bytes of memory and

does not utilize the graphics pages, therefore it is not

necessary to relocate the disk operating system.

Push "return" after each input.

STEP 1:

SCREEN PROMPT:

BASIC MATRIX PROGRAM

PROBLEM IDENTIFICATION ->

16



REMARKS:

Label the problem. Type in any appropriate combina-

tion of letters, numbers, and/or symbols, excluding

commas. This input is limited to 255 characters.

STEP 2:

SCREEN PROMPT:

PLANT ORDER? ->

REMARKS:

Enter the number that corresponds to the order of

the A matrix. Maximum order allowed is ten.

STEP 3:

SCREEN PROMPT:

INPUT PLANT MATRIX.

A(row,column)=

REMARKS:

Input the A matrix by typing in each element as

prompted. The program will ask for each element

beginning with the first row and going from left to

right.

STEP 4:

SCREEN PROMPT:

HARDCOPY? (Y/N)->

REMARKS:

After this step is completed the program will output

the A matrix for reference. This will be followed by

the inverse of the A matrix, the determinant of the A

17



matrix, the matrix coefficients of the resolvent

matrix numerator, the characteristic polynomial

coefficients, the eigenvalues of the plant matrix,

and finally the elements of the state transition

matrix. See Figure 1 for a sample output.

3. BASMAT Example

This example will use the system matrix

o 0

2-3

to demonstrate the use of the BASMAT program. It will refer

to the steps described in the previous section, BASMAT

User's Guide.

Step 1. Enter "EXAMPLE <CR>" where <CR> = return.

Step 2. Enter "3 <CR>"

Step 3. Enter "0 <CR> 1 <CR> 0 <CR> 0 <CR> 0 <CR> 1 <CR> -2

<CR> -3 <CR> -3 <CR>"

Step 4. Enter "Y <CR>"

The resulting output is shown in Figure 1. These

results are interpreted as follows:

The plant matrix is shown just as it was entered with

rows horizontal and columns vertical. This is the format

used for all matrix output.

The inverse of the plant matrix is shown followed by

the scalar determinant of the A matrix.

18



The matrix coefficients of the resolvent matrix

numerator are given as powers of s. The characteristic

polynomial is listed as coefficients of powers of s.

From this output, the resolvent matrix

(s) = adj(sI-A)/det(sI-4)

may be written. The characteristic polynomial, det(sI-A),

2 3is 2+3s+3s +s 3 . The first element of the resolvent matrix

numerator is 3+3s+s2 making the first element of the

resolvent matrix

() = 3+3s+s2

Oilj -2+3s+3s2 +S 3

The real and imaginary parts of the eigenvalues of

the plant matrix are listed. Finally, the elements of the

state transition matrix are given. The first element of

the state transition matrix can be written

(t) = 0.333e-2t+O.667e-O'5tcos 0.866t+1.15e 0 " S t sin 0.866t

19
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'I

BASIC MATRIX PROGRAM

PROBLEM I DENTI FI CATI ON-EXAMPLE

THE PLANT MATRIX

8 8

-2 -3 -3

THE INVERSE OF THE PLANT MATRIX

.'-1.5 -1.5-.

1I 0 8
,-8 1 13

THE DETERMINANT OF THE PLANT MATRIX

-2

THE MATRIX COEFFICIENTS OF THE RESOLVENT MATRIX NUMERATOR

THE MATRIX COEFFICIENT OF SA2

1 8 3

8 11

THE MATRIX COEFFICIENT OF SAI

3 1
8 3 1
-2 -3 8

THE MATRIX COEFFICIENT OF SA

3 3 1
-2 8 8
o -2 8

****x ,x x* x n x Figure 1 BASMAT Output
20
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Figure 1 (Cont.)

THE CHARACTERISTIC POLYNOMIAL IN ASCENDING POWERS

2 3 3 1

THE EIGENVALUES OF THE PLANT MATRIX

REAL IMAGINARY

-2 0

-. 5 -. 866025404

-. 5 .866025404

THE ELEMENTS OF THE STATE TRANSITION MATRIX

THE MATRIX COEFFICIENT OF EXP(-2)T
.333333333 .333333333 .333333333
-.666666666 -.666666666 -.666666666
1.33333333 1.33333333 1.33333333

THE MATRIX COEFFICIENT OF EXP(-.5)TXCOS(.866025404)T

.666666666 -. 333333333 -. 333333333

.666666666 1.66666667 .666666666
-1.33333333 -1.33333333 -. 333333333

THE MATRIX COEFFICIENT OF EXP(-.5)TXSIN(.866025404)T
1.15470054 1.73205081 .577350268
-1.15470054 -. 577350268 0
0 0 -1.15470054 -. 577350268

Figure 1

21



B. RTRESP

1. Rational Time Response Program (RTRESP)

a. Introduction

Frequently it is desirable to know the response

of a system as a function of time. A computer program can

determine this quicker and more accurately than by hand.

b. Description of Program A1

RTRESP determines the time response in closed

. form of the closed loop system

k(t )=Ax (t)+bu(t)

T
u(t)=K[r(t)-, x(t)]

T
y(t)=c x(t)

due to any initial conditions x(O) and input r(t) for tZ0.

The system must have a rational Laplace transform R(s) with

a pole-zero excess of at least one. [Ref. 1: pp. 11,12]

ruth
The input r(t) is treated by forming a m -order

dynamic system whose initial condition response is equal to

r(t) for a specific set of initial conditions. This system

is combined with the original system and then the complete

response in closed form is determined from the subroutine

STMST. The order of the combined system must be ten or

less.

Various primary and utility subroutines are used

in RTRESP. The primary subroutines are listed below with a

brief description:

22
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CHREQA. This subroutine determines the charac-

teristic polynomial, det(sI-A), for the matrix A using the

principal-minor method.

PROOT. This subroutine uses a modified Bairstow

method for root extraction to determine the roots of a poly-

nomial with real coefficients. It is used to determine the

roots of the numerator and denominator of R(s) when they are

entered in polynomial form. PROOT is also used to determine

the eigenvalues of the combined system matrix (i.e. the roots

of the characteristic polynomial determined by CHREQA).

SEMBL. This subroutine determines the coeffi-

cients of a polynomial from the roots of the polynomial.

It is used to determine the polynomial coefficients of the

numerator and denominator of R(s) when they are entered

in the factored form. This subroutine together with PROOT

provide the feature that R(s) may be entered in either

factored or polynomial form. It will appear in the output

in both forms.

STMST. This subroutine computes the state transi-

tion matrix

0(t) = exp(At)

for a matrix A. It uses the Sylvester Expansion Theorem.

Eigenvalues of the A matrix must be provided. This routine

can not handle duplicate eigenvalues, therefore it is

necessary that the combined system and input have no

23
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repeated eigenvalues. STMST is used to determine the state

transition matrix of the augmented system. -4

c. Program Translation Problems

See section II, Translation Considerations.

2. RTRESP User's Guide

Push "return" after each input.

STEP 1:

SCREEN PROMPT:

RATIONAL TIME RESPONSE PROGRAM (RTRESP)

THIS PROGRAM DETERMINES THE TIME RESPONSE OF A
CLOSED-LOOP SYSTEM DUE TO SPECIFIED INITIAL
CONDITIONS AND INPUT. SYSTEM MUST HAVE A RA-
TIONAL LAPLACE TRANSFORM WITH A POLE-ZERO EXCESS
OF AT LEAST ONE.

PROBLEM IDENTIFICATION ->

REMARKS:

Label the problem. Type in any appropriate combina-

tion of letters, numbers, and/or symbols, excluding

commas and colons. This input is limited to 255

characters. This is also the name used to save and

retrieve the disk file containing the problem

description. (See steps 2 and 3)

STEP 2:

SCREEN PROMPT:

WAS THIS PROBLEM DESCRIPTION PREVIOUSLY
SAVED? (Y/N) ->

REMARKS:

This step provides the option of recalling a pre-

viously saved problem description from the disk.

24
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If "Y" is typed, the program looks for the problem

description saved under the label typed in STEP 1.

The program then runs to completion using the

retrieved program description. If an "N" is

typed, the program continues with STEP 3.

STEP 3:

SCREEN PROMPT:

DO YOU WANT TO SAVE THIS PROBLEM DESCRIPTION?
(Y/N) ->

REMARKS:

A positive response will save the problem descrip-

tion, that will be entered in the following steps,

to the disk under the label entered in STEP 1.

This problem may be retrieved during a later session

by entering the proper label in STEP 1 and typing

"Y" in STEP 2.

STEP 4:

SCREEN PROMPT:

ORDER OF THE SYSTEM? ->

REMARKS:

The total order of the system and the input must

not exceed ten.

STEP 5:

SCREEN PROMPT:

INPUT SYSTEM (A) MATRIX

A(1,1) =

25



REMARKS:

Enter the elements of the A matrix as prompted.

The format is A(row,column)

STEP 6:

SCREEN PROMPT:

THE A MATRIX

(display of the A matrix)

ANY CHANGES? (Y/N) ->

REMARKS:

If an "N" is typed, the program proceeds to STEP 9.

To correct the matrix type "Y" and the program will

proceed to STEP 7.

STEP 7:

SCREEN PROMPT:

TYPE ROW,COLUMN OF THE ELEMENT TO BE
CORRECTED ->

STEP 8:

SCREEN PROMPT:

A (row,column) =

REMARKS:

Enter the correct value. The program will return

to STEP 6.

STEP 9:

SCREEN PROMPT:

INPUT THE CONTROL (B) VECTOR

B(1) =
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REMARKS:

After the vector is entered, a correction sequence

similar to steps 6 through 8 is encountered.

STEP 10:

SCREEN PROMPT:

INPUT THE OUTPUT (C) VECTOR

C(1) =

REMARKS:

After the C vector is entered, a correction sequence

similar to steps 6 through 8 is encountered.

STEP 11:

SCREEN PROMPT:

INPUT THE FEEDBACK COEFFICIENTS

FEEDBACK COEFFICIENT (1) =

REMARKS:

After the feedback coefficients are entered, a

correction sequence similar to steps 6 through 8

is encountered.

STEP 12:

SCREEN PROMPT:

INPUT THE GAIN ->

REMARKS:

Enter the controller gain.
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STEP 13:

SCREEN PROMPT:

INPUT THE INITIAL CONDITIONS

X0(1) =

REMARKS:

After the initial conditions are entered, a

correction sequence similar to steps 6 through

8 is encountered.

STEP 14:

SCREEN PROMPT:

ENTER THE INPUT GAIN ->

REMARKS:

Enter the gain of the input function, R(s).

STEP 15:

SCREEN PROMPT:

'KEY' = P FOR POLYNOMIAL COEFFICIENT FORM
'KEY' = F FOR POLYNOMIAL FACTORED FORM

INPUT 'KEY', ORDER FOR NUMERATOR POLYNOMIAL ->

REMARKS:

Choose the preferred method of entering the numerator

polynomial of the input function, R(s).

STEP 16A:

SCREEN PROMPT (assumes coefficient form chosen):

INPUT POLYNOMIAL COEFFICIENTS

INPUT COEFFICIENTS IN ASCENDING PWRS OF S

INPUT COEFFICIENT OF S0 ->0
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REMARKS:

Enter the coefficient along with its algebraic

sign as prompted. The program assumes that the

coefficient of the highest power of s is one.

STEP 16B (assumes factored form chosen):

SCREEN PROMPT:

INPUT POLYNOMIAL FACTORS

FOR FACTOR 1
REAL PART ->

IMAGINARY PART ->

REMARKS:

Enter the factor with its algebraic sign. Do not

enter the associated root. (e.g. For "(s-i)" enter

1"-1".) After the real part of the factor is entered,

the program asks for the imaginary part, allowing

for input of quadradic factors. If a non-zero

imaginary part is entered, the program automatically

enters its complex conjugate.

STEP 17:

SCREEN PROMPT:

'KEY' = P NOR POLYNOMIAL COEFFICIENT FORM
'KEY' = F FOR POLYNOMIAL FACTORED FORM

INPUT 'KEY', ORDER FOR DENOMINATOR POLYNOMIAL ->

REMARKS:

The denominator is entered just as described for

the numerator in steps 15 and 16.
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After this step is completed, the program will

output all input for reference followed by the

time response of x(t) and the system output,

y(t).

3. RTRESP Example

It is desired to know the time response of the

closed loop system

(t) =x(t) + u[0)

u(t) = 5{r(t) - [1.0 0.5] x(t)}

y(t) =[ ] x(t)

if the input function is given by

R(s) = 2.0 (1/s)

and the initial conditions are

x(t) = 0

Referring to the steps described in the pervious sec-

tion, RTRESP User's Guide, this problem would be entered as

follows:

Step 1. Enter "EXAMPLE <CR>" where <CR> = carriage

return.

Step 2 and Step 3. Enter "N <CR>."

Step 4. Enter "2 <CR>."

Step 5. Enter "0 <CR> 1 <CR> -1 <CR> -1 <CR>."

Step 6. Enter "N <CR>."
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Step 9. Enter "0 <CR> 1 <CR>." Enter appropriate

response for correction sequence.

Step 10. Enter "I <CR> 1 <CR>." Enter appropriate

response for correction sequence.

Step 11. Enter "I <CR> .5 <CR>." Enter appropriate

response for correction sequence.

Step 12. Enter "5 <CR>."

Step 13. Enter "0 <CR> 0 <CR>." Enter appropriate

response for correction sequence.

Step 14. Enter "2 <CR>."

Step 15. Enter "P,0 <CR>."

Step 16A. Enter "I <CR>."

Step 17. Enter "F,I <CR> 0 <CR>."

The program will now run to completion resulting in the out-

put shown in Figure 2.

,. The output begins with the program name and problem

identification. The A, B, and Z matrices are shown for

reference followed by the feedback coefficients and the

controller gain. Next, the initial conditions and input

gain are listed. The numerator and denominator polynomials

of the input function are given in both polynomial coeffi-

cient form and factored form regardless of the method in

which they were entered. The polynomial coefficient form is

given as a list of coefficients from left to right in

ascending powers of s. The highest power of s is always

one. The polynomial factored form appears as a list of the
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real and imaginary parts of each root of the polynomial.

Notice that the numerator is only given in coefficient

form since it is of zero order and no roots exist.

The time response of the state x(t) is given in the

form of vector coefficients of the various natural modes of

the system and the input function. From this output

x(t) is seen to be

-1.75t -1.75t

* Xl(t) = -1.67e Cos 1.71t - 1.70e sin 1.71t + 1.67

x2 (t) = 5.83e -1 .75t sin 1.71t

The time response of the output y(t) is given as scalor

coefficients of the same natural modes as x(t) so it is seen

that

y(t) = -1.67e - 7 5t cos 1.71t + 4.13e - 7 5 t sin 1.71t + 1.67
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RATIONAL TIME RESPONSE
PROBLEM IDENTIFICATION -) EXAMPLE

THE A MATRIX

o 1

-1 -1

THE B MATRIX

8 1
THE C MATRIX

1 1

FEEDBACK COEFFICIENTS

1 .5

GAIN = 5

INITIAL CONDITIONS, X(0)

RGAIN =2

NUMERATOR POLYNOMIAL OF R(S) - ASCENDING PNRS OF S

Figure 2 RTRESP Output
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Figure 2 (Cont.)

DENOMINATOR POLYNOMIAL OF R(S) - ASCENDING PWRS OF S

SI

DENOMINATOR ROOTS ARE
REAL PART IMAGINARY PART

THE TIME RESPONSE OF THE STATE X(T)

THE VECTOR COEFFICIENT OF EXP(-1.75)TXCOS(1.71391365)T
-1. 66666667

THE VECTOR COEFFICIENT OF EXP(-1.75)TESIN(1.71391365)T
-1.78175824 5.83459966

THE VECTOR COEFFICIENT OF EXP(8)T
1.66666667 9.31322575E-10

THE TIME RESPONSE OF THE OUTPUT Y(T)

THE COEFFICIENT OF EXP(-1.75)TXCOS(1.71391365)T

-1.66666667
THE COEFFICIENT OF EXP(-1.75)TXSIN(I.713913,6.5)T

4.13284143

THE COEFFICIENT OF EXP(O)T

1.66666667

Figure 2
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C. GTRESP

1. Graphical Time Response Program (GTRESP)

a. Introduction

Knowing the response of a system as a function of

time can be very helpful in the study and analysis of that

system. The graphical display of this response can give

much insight into a system's response characteristics.

b. Description of Program

GTRESP [Ref. 1: pp. 22-28] determines and

graphically displays the time response of the closed loop

system

(t) = Ax(t) + bu(t)

u(t) = K [r(t) - kT X(t)]

T
y(t) = T X(t)

due to any initial conditions x(0) and input r(t).

The basic purpose of this program is similar

to that of the RTRESP program described earlier. The

difference between the two programs is that GTRESP will

determine the time response for arbitrary input functions

which may not have rational Laplace transforms but RTRESP

requires a rational Laplace transform. Also GTRESP produces

a graphical display of the time response instead of a

closed form expression as in the RTRESP program.

The GTRESP program uses a fourth-order Runge-Kutta

numerical integration algorithm to calculate the time response.
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The main subroutines used are CALCU, RUNGE, TRESP, and YDOT.

Also various utility and plotting subroutines are used.

CALCU. This subroutine is called by TRESP to

determine the reference input r(t) and the control input

- T
u(t)=K [r(t) - kTx(t)]

The reference input r(t) must be defined by the user by

inserting the appropriate BASIC coding into the subroutine

between line numbers 5010 and 5500. The reference input is

represented by the variable R and the control input by the

variable U.

RUNGE. This subroutine is called by TRESP and

contains the actual fourth-order Runge-Kutta integration

algorithm. It must be executed four times for each inte-

gration step.

TRESP. This subroutine is the driving subroutine

which calls the subroutines CALCU, RUNGE, and YDOT along with

the necessary plotting routines. It calculates the time

response of the closed loop linear system described by the

input parameters and plots the desired variables.

YDOT. This subroutine is called by TRESP to

compute the derivative

It is designed to handle linear systems but can easily be

modified to handle nonlinear and time varying systems which

would give GTRESP a nonlinear and time varying capability.
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c. Program Translation Problems

See section II, Translation Considerations.

2. GTRESP User's Guide

Push "return" after each input.

STEP 1:

SCREEN PROMPT:

GRAPHICAL TIME RESPONSE PROGRAM (GTRESP)

THIS PROGRAM DETERMINES AND GRAPHICALLY
DISPLAYS THE TIME RESPONSE OF A CLOSED-
LOOP SYSTEM DUE TO SPECIFIED INITIAL
CONDITIONS AND INPUT.

PROBLEM IDENTIFICATION ->

REMARKS:

Label the problem. Type in any appropriate

combination of letters, numbers, and/or symbols,

excluding commas and colons. This input is

limited to 255 characters. This is also the name

used to save and retrieve the disk file containing

the problem description. (See steps 2 and 3)

STEP 2:

SCREEN PROMPT:

WAS THIS PROBLEM DESCRIPTION PREVIOUSLY
SAVED? (Y/N) ->

REMARKS:

This step provides the option of recalling a pre-

viously saved problem description from the disk.

If "Y" is typed the program looks for the problem

description saved under the label typed in STEP 1.
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The program then runs to completion using the

retrieved program description. If an "N" is

typed the program continues with STEP 3.

STEP 3:

SCREEN PROMPT:

DO YOU WANT TO SAVE THIS PROBLEM DESCRIPTION?
(Y/N) ->

REMARKS:

The problem description will be entered in the

following steps.

A positive response will save the problem des-

cription to the disk under the label entered in

STEP 1. This problem may be retrieved during a

later session by entering the proper label in STEP

1 and typing "Y" in STEP 2.

STEP 4:

SCREEN PROMPT:

ORDER OF THE SYSTEM? ->

REMARKS:

The total order of the system and the input must not

exceed ten.

STEP 5:

SCREEN PROMPT:

INPUT SYSTEM (A) MATRIX

A(1,1) =
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REMARKS:

Enter the appropriate element of the A matrix. The

2) format is A(row,column) =

STEP 6:

SCREEN PROMPT:

THE A MATRIX

(display of the A matrix)

ANY CHANGES? (Y/N) ->

REMARKS:

If an "N" is typed, the program proceeds to STEP 9.

To correct the matrix type "Y" and the program will

proceed to STEP 7.

STEP 7:

SCREEN PROMPT:

TYPE ROWCOLUMN OF THE ELEMENT TO BE
CORRECTED ->

STEP 8:

SCREEN PROMPT:

A(row,column) =

REMARKS:

Enter the correct value. The program will return to

STEP 6.

STEP 9:

SCREEN PROMPT:

INPUT THE CONTROL (B) VECTOR

B(1) =
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REMARKS:

After the B vector is entered a correction

sequence similar to steps 6 through 8 is

encountered.

STEP 10:

SCREEN PROMPT:

INPUT THE OUTPUT (C) VECTOR

C(1) f

REMARKS:

After the C vector is entered a correction sequence

similar to steps 6 through 8 is encountered.

STEP 11:

SCREEN PROMPT:

INPUT THE FEEDBACK COEFFICIENTS

FEEDBACK COEFFICIENT (1) =

REMARKS:

After the feedback coefficients are entered a correc-

tion sequence similar to steps 6 through 8 is

encountered.

STEP 12:

SCREEN PROMPT:

INPUT THE CONTROLLER GAIN ->

REMARKS:

Enter the controller gain.
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STEP 13:

SCREEN PROMPT:

INPUT THE INITIAL CONDITIONS

Xo(1) =

REMARKS:

After the initial conditions are entered a correc-

tion sequence similar to steps 6 through 8 is

encountered.

STEP 14:

SCREEN PROMPT:

ENTER THE FOLLOWING PARAMETERS:
NOTE..(TF-TZ)/(DT*FR) =< 100

INITIAL TIME (TZ) ->

REMARKS:

Enter the initial time of the time interval of

interest. Due to program constraints the initial

and final times and the time step and frequency of

output must be chosen so that they satisfy the

relation.

(TF-TZ) / (DT*FR) =< 100

*STEP 15:

SCREEN PROMPT:

FINAL TIME (TF) ->

REMARKS:

Enter the final time of the time interval of

interest.
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STEP 16:

SCREEN PROMPT:

TIME STEP (DT) ->

REMARKS:

Enter the time increment for each step.

STEP 17:

SCREEN PROMPT:

FREQUENCY OF OUTPUT (FR) ->

REMARKS:

Enter an integer n and the program will print out

data on every nth time step iteration. Ensure

that the relation expressed in the remarks of STEP

14 is satisfied.

STEP 18:

SCREEN PROMPT:

YOU MAY PLOT UP TO 8 VARIABLES VS TIME.

VARIABLE NUMBER VARIABLE NUMBER

XI(T) 1 X8(T) 8
X2(T) 2 X9(T) 9
X3(T) 3 X1O(T) 10
X4(T) 4 E(T) 11
X5(T) 5 U(T) 12
X6(T) 6 Y(T) 13
X7(T) 7 R(T) 14

HOW MANY VARIABLES TO PLOT? MAX=8 ->

REMARKS:

You may plot up to 8 variables vs time. These

variables will be plotted on the same plot in the
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output. Enter the number of variables you want to

appear on the plot.

STEP 19:

SCREEN PROMPT:

TYPE THE VARIABLE NUMBER <CR> ->

REMARKS:

Type the number associated with the variable of

interest. After carriage return <CR> is typed, the

program will continue to prompt for another variable

number until the number of variables that the user

indicated in STEP 18 has been entered.

STEP 20:

SCREEN PROMPT:

YOU CHOSE THE FOLLOWING VARIABLES:
(list of variable numbers entered in STEP 19)
DO YOU WANT TO MAKE ANY CHANGES? (Y/N) ->

REMARKS:

To make a change in the variables to be plotted

type a "Y" and the program will return to STEP

18. If an 'N" is typed, the program will run to

completion.

3. GTRESP Example

It is desired to determine and plot the time response

of the error

e(t)=r(t)-y(t)

the input r(t), and the state variable x2 (t) for the system
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u(t) = 5{r(t) - (1.0 0.5] x(t)}

y(t) ;[ ]xt

The time interval of interest is

The iteration step size (DT) is chosen to be 0.01 and printed

output is desired every ten steps so FREQ equals 10. The

initial conditions are

x(t)=o

and the input function is

r(t) = 5.0 if 0 t<l

r(t) = 0 otherwise.

In order to define this input function the following

BASIC coding is inserted between line numbers 5010 and 5500

in the subroutine CALC.

5020 IF TZ > 1 GOTO 5040
5030 R = 5: GOTO 5500

. 5040 R = 0
5500 REM END OF ROUTINE DESCRIBING R(T)

Referring to the steps described in section 2,

GTRESP User's Guide, this problem would be entered as

follows:

Step 1. Enter "EXAMPLE <CR>" where <CR> = carriage

return.

Step 2 and Step 3. Enter "N <CR>."

Step 4. Enter ''2 <CR>."
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Step 5. Enter "0 <CR> 1 <CR> -1 <CR> -1 <CR>."

Step 6. Enter "N <CR>."

Step 9. Enter "0 <CR> 1 <CR>." Enter appropriate

response for correction sequence.

Step 10. Enter "1 <CR> 1 <CR>." Enter appropriate

response for correction sequence.

Step 11. Enter "1 <CR> .5 <CR>." Enter appropriate

response for correction sequence.

Step 12. Enter "5 <CR>."

Step 13. Enter "0 <CR> 0 <CR>." Enter appropriate

response for correction sequence.

Step 14. Enter "0 <CR>."
Step 15. Enter "4 <CR>."

Step 16. Enter ".01 <CR>."

Step 17. Enter ".0 <CR>." Ensure that the constraint

given in step 14-of GTRESP User's Guide is met. That con-

straint is (TF-TZ)/(DT*FR) = 100

In this case

(4-0)/( .01*10)=40

so the constraint is met.

Step 18. Enter "3 <CR>."

Step 19. Enter "I1 <CR> 14 <CR> 2 <CR>." This causes

the error e(t), the input r(t), and the state variable x2(t),

respectively, to be plotted as desired from the problem

statement.
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The program will now run to completion resulting in

the output shown in Figure 3.

The output begins with the program name and problem

identification. The A, B, and C matrices are shown for

reference followed by the feedback coefficients and the

controller gain. Next the initial conditions and time

parameters are listed.

The second page of output lists in tabular form the

value of time t and the corresponding values of the output

y(t), the control u(t), and all of the state variables.

The user has no control over the variables output in this

form.

The third page of output is the graph itself. Below

the graph is enough information to properly interpret the

plotted data.
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GRAPHICAL TIME RESPONSE
*" PROBLEM IDENTIFICATION -> EXAMPLE

THE A MATRIX

-1 -1

THE B MATRIX

0 1

THE C MATRIX

1 1

FEEDBACK COEFFICIENTS

1 .5

GAIN = 5

INITIAL CONDITIONS, X(0)

6 0

INITIAL TIME = 0 FINAL TIME = 4

TIME STEP = .61 FREQUENC' OF OUTPUT = 10

Figure 3 GTRESP Output
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Figure 3 (Cont.)

GRAPHICAL TIME RESPONSE
PROBLEM IDENTIFICATION -> E'XAMPLE

T Y(T) U(T) XI(T) X2(T)

I s 25
.1 2.19944778 19.2237187 .111864751 2.J8838383
.2 3.84846675 14.3947762 .39362276 3.454344
.3 5.825394 10.4766595 .782796787 4.24374261
.4 5.81339897 7.39775741 1.22749897 4.5859009
.5 6.2849M392 5.8653327 I. 688279 4.59681112
.599999998 6.51052439 3.37643244 2.13899263 4.37162176
.699999996 6.55142565 2.2268987 2.55813861 3.99328644
.799999994 6.4612831 1.51321188 2.93459526 3.52552595
.899999991 6.28625128 1.14451516 3.26194266 3.31839862
.999999989 6.84793255 1.93693376 3.53819394 2.588838611.89999999 3.62937346 -18.1932886 3.65693877 -. 8365653122
1. 19999998 1.6986535 -13.1375299 3.5564966 -1.35738124

1.29999998 .258794762 -8.91362849 3.38641664 -3.94762187
1.39999998 -. 768858826 -5.48799854 2.96369824 -3.732557871.49999998 -1.4543845 -2.7964861 2.57289891 -4.02729341

1.59999999 -1.847253 -. 759576696 2.16790317 -4.83197569
1.69999998 -2.85893263 .714971188 1.77339415 -3.83223678
1.79999997 -2.99253493 1.71656348 1.49599864 -3.49844268
1.89999997 -2.91986576 2.3353976 1.87618985 -3.386 561
1.99999997 -1.85192291 2.65573162 .78963826 -2.64155317
2.89999996 -1.64667353 2.7468857 .547919246 -2.19459277
2.19999996 -1.419"8918 2.67275259 .34998815 -1.7697733
2.29999996 -1.18722972 2.48587785 .19287854 -1.38018831
2.39999996 -. 964937942 2.22396883 .3724495998 -1.03648655
2.49999996 -.758194579 1.93564872 -.916064982 -. 742!2671
2.59999995 -. 574947468 1.6314455 -.8776307299 -.497316738
2.69999995 -. 416853791 1.33489664 -. 117194954 -.299748746
2.79999995 -.284448821 1.95867972 -. 139923866 -.145425754
2.89999995 -. 176816196 .816794287 -. 147465518 -. 8203586781
2.9999995 -. 929629427 .595121516 -. 14598 64 .53924521
3.89999994 -. 276993776 .413224971 -. 137598611 .199891233
3.19999994 .919515298 .264229347 -. 124743259 .14379478
3.29999994 .1511366439 .145923933 -. 199486217 .168442861
3.39999994 .9718853297 .855249217 -99.39872894 .16409261
3.49999993 .681566273 -. 8115645112 -. 6768984695 .158398742
3.59999993 .8847995445 -. 85793434 -. 9616168085 .146407353
3.69999993 .682838923 -. 0877345728 -. 9477441939 .138582217
3.7999993 .6772893216 -. 10431596 -. 8355633192 .112352641

3.89999993 .8694859387 -.116744462 -. 8251881781 .6946741168
3.99999992 .8684867868 -. 169696615 -. 8166981408 .8779949276

Figure 3
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Figure 3 (Cant.)

PROBLEM IDENTIFICATION -EXAMPLE

K ~ GRAPHICAL TIME RESPONSE *X

43 4

x

x x +
XX x

:1BCIS tTFT TTIMETTAXIS
ORINT REPNEMANTD

TI MAK4HWITRASO NT

XX +
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IV. TRANSFER FUNCTION PROGRAMS

The two transfer function programs discussed in this

section are modified versions of programs of the same names

found in [Ref. 1].

The Frequency Response program (FRESP), discussed in

part A of this section, determines and plots the frequency

response of a transfer function over a specified range of

frequencies. The output may take the form of rectangular

Bode plots or a polar Nyquist plot or both as desired.

The Root Locus program (RTLOC), discussed in part B,

calculates and plots the root locus of a transfer function

for a specified range of gains. It is also possible to

enlarge a small rectangular section of the root locus for

more detail.
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A. FRESP

1. Frequency Response Program (FRESP)

a. Introduction

The response of a system as a function of fre-

quency is a very important characteristic of that system.

Some common ways of graphically displaying the frequency

response of a system include the use of amplitude and phase

Bode plots and Nyquist diagrams. These are valuable tools

for system analysis.

b. Description of Program

The FRESP program [Ref. 1: pp. 105-113] is

used to determine the frequency response of a rational trans-

fer function G(s) of the form

A(s)

G(s) KB(s)

where

A(s) =a1 + a2s+ ... + asM- + SM

N-i NB(s) = b + b s +.. + b s + s1 2 N

The output may take the form of Bode plots or a Nyquist dia-

gram or both in addition to tabular data.

FRESP gives the user the option of supplying

discrete frequency values or allowing the program to linearly

or logarithmically interpolate frequency values between two

limit values. The complex number G(j W) can be computed for
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each frequency value. G(j(A)) can be written in rectangular

form as

G(jWj) = R(W) + jX(WJ)

where R( W) and X(WJ) are real values. The magnitude and

phase of G(j(Aj) can then be written as

G(j)) = [R 2 () + X2 ((A)]

arg G(j W) = arctan X(W)/R( W)

The FRESP program uses the subroutines PROOT,

PVAL, and SEMBL. The subroutines MAXI, PHNOM, GRAPH, and

SPLIT that appear in the FORTRAN version do not appear in the

BASIC version. They are incorporated into the main program

and into various plotting subroutines written for the specific

microcomputer system used.

PROOT. This subroutine uses a modified Bairstow

method for root extraction to determine the roots of a

polynomial with real coefficients. It is used to determine

the roots of the numerator and denominator of G(s) when

*i they are entered in polynomial form.

SEMBL. This subroutine determines the coeffi-

cients of a polynomial from the roots of the polynomial.

'. It is used to determine the polynomial coefficients of the

numerator and denominator of G(s) when they are entered in

the factored form. This subroutine together with PROOT

provides the feature that G(s) may be entered in either

factored or coefficient form and it will appear in the output

in both forms.
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PVAL. This subroutine is used to evaluate a

polynomial A(s) with real coefficients for

s =PR + jPI

PVAL is executed twice for each frequency value used, once

for the numerator of the transfer function and again for

the denominator.

c. Program Translation Problems

In addition to the programing considerations dis-

cussed in section II, an output anomaly was traced to an

apparent oversight in the subroutine PVAL. It was discovered

that a zero order numerator over a second order denomina-

tor with a free s such as

1/s(s+10)

was plotted as

1/(s+10)

The reason for this was that PVAL treated a zero order

polynomial and a first order polynomial both as a first order

polynomial which in this case resulted in the free s in

the denominator being cancelled. The reason for this can

be seen by examining the portion of FORTRAN code from PVAL

in [Ref. 1: p. 164] repeated below:

P=CMPLX(A(NN+1),0.)
DO 100 J=1,NN

100 P=PS+A(NN+-J)
VR=REAL(P)

In this portion of code NN represents the order

of the polynomial being evaluated and the intention is that

the DO loop be executed a number of times equal to the order
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of the polynomial. But because of the nature of the DO loop,

if the polynomial is of zero order (i.e. NN equals zero)

the loop will be executed once just as if the polynomial

was of first order [Ref. 3]. One way to correct this

problem is to modify the section of PVAL as shown here:

P=CMPLX(A(NN+1), 0.)
IF (NN) 110,110,90

90 DO 100 J=I,NN
100 P=P*S+A(NN+-J)
110 VR=REAL(P)

The essence of the modification is to skip the DO loop if

the polynomial has order zero. Translating this modifica-

tion into the BASIC version of FRESP solved the problem.

2. FRESP User's Guide

Push "return" after each input.

STEP 1:

SCREEN PROMPT:

FREQUENCY RESPONSE PROGRAM (FRESP)

THIS PROGRAM OBTAINS AND PLOTS THE FREQUENCY
. OF A RATIONAL TRANSFER FUNCTION OVER A SPECIFIED

RANGE OF FREQUENCIES. BOTH RECTANGULAR BODE
PLOTS AS WELL AS A POLAR NYQUIST PLOT CAN BE
OBTAINED.

PROBLEM IDENTIFICATION ->

REMARKS:

Label the problem. Type in any appropriate combina-

tion of letters, numbers, and/or symbols, excluding

commas and colons. This input is limited to 255

characters.
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STEP 2:

SCREEN PROMPT:

INPUT THE GAIN ->

REMARKS:

Enter the transfer function gain.

STEP 3:

SCREEN PROMPT:

'KEY' = P FOR POLYNOMIAL COEFFICIENT FORM
'KEY' = F FOR POLYNOMIAL FACTORED FORM

INPUT 'KEY', ORDER FOR NUMERATOR ,A(S) ->

REMARKS:

Choose the preferred method of entering the numera-

tor polynomial of the transfer function, G(s).

STEP 4A (assumes coefficient form chosen):

SCREEN PROMPT:

INPUT POLYNOMIAL COEFFICIENTS

INPUT COEFFICIENTS IN ASCENDING PWRS OF S

INPUT COEFFICIENT OF SAO ->

REMARKS:

Enter the coefficient along with its algebraic sign

as prompted. The program assumes that the coeffi-

cient of the highest power of s is one.

STEP 4B (assumes factored form chosen):

SCREEN PROMPT:

INPUT POLYNOMIAL FACTORS

FOR FACTOR 1
REAL PART ->
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IMAGINARY PART ->

REMARKS:

Enter the factor with its algebraic sign. Do not

enter the associated root. (e.g. For "(s-i)"

enter "-1".) After the real part of the factor is

entered, the program asks for the imaginary part

allowing for input of quadradic factors. If a

non-zero imaginary part is entered, the program

automatically enters its complex conjugate.

STEP 5:

SCREEN PROMPT:

'KEY' = P FOR POLYNOMIAL COEFFICIENT FORM
'KEY' = F FOR POLYNOMIAL FACTORED FORM

INPUT 'KEY', ORDER FOR DENOMINATOR, B(S) ->

REMARKS:

The denominator is entered just as described for

the numerator in steps 3 and 4.

STEP 6:

SCREEN PROMPT:

MINIMUM FREQUENCY VALUE ->

REMARKS:

Enter the minimum frequency value in radians *er

second of the frequency range of interest.

STEP 7:

SCREEN PROMPT:

MAXIMUM FREQUENCY VALUE ->
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REMARKS:

Enter the maximum frequency value in radians per

second of the frequency range of interest.

STEP 8:

SCREEN PROMPT:

NUMBER OF FREQUENCY VALUES TO BE USED ->

REMARKS:

Enter an integer from 1 to 200. Since the horizon-

tal resolution capability of the graphics on the

microcomputer system used is 191 pixels, any number

of values greater than 191 adds no more detail to the

Bode plots. For the Nyquist diagram the greater the

number of values the greater the detail due to the

nature of the plot. If a list of discrete fre-

quency values will be supplied (i.e. option 1 in

step 9) enter the number of frequencies in that

list.

STEP 9:

SCREEN PROMPT:

0 = LOGARITHMIC INTERPOLATION
1 = DISCRETE VALUES SUPPLIED
2 = LINEAR INTERPOLATION

CHOOSE ONE->

REMARKS:

Make a choice by entering the associated number. This

step allows the user to choose the method used by the

program to obtain discrete frequency values used to
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generate data points. LOGARITHMIC INTERPOLATION pro-

duces data points that appear equally spaced on a

logarithmic scale between the minimum and maximum

frequency values entered in steps 6 and 7. With this

choice a Bode and/or Nyquist plot may be obtained.

LINEAR INTERPOLATION produces data points that appear

equally spaces on a linear scale. Only a Nyquist

plot may be obtained with this choice. DISCRETE VALUES

SUPPLIED allows the user to supply a list of

discrete frequency values of interest. No plots

may be obtained, however, with this option. Below

is a table summarizing the available graphical output

for each choice.

CHOICE BODE NYQUIST

0 YES YES
1 NO NO
2 NO YES

STEP 10 (assumes choice 1 in step 9):

SCREEN PROMPT:

TYPE IN THE DISCRETE FREQUENCY VALUES,
(number entered in step 8) VALUES NEEDED
FREQ (1)?

REMARKS:

Enter the list of frequency values as prompted. When

the last value has been entered the program will run

to completion outputting data similar to Figure 4 with

the exception of the plots.

58



STEP 11 (assumes choice 0 in step 9):

SCREEN PROMPT:

BODE PLOT? (Y/N) ->

REMARKS:

The program outputs tabular data regardless of the

choice made here.

STEP 12 (assumes choice 0 or 2 in step 9):

SCREEN PROMPT:

NYQUIST PLOT? (YIN) ->

REMARKS:

The program outputs tabular data regardless of the

choice made here.

After this step, the program runs to completion.

See sample output in Figure 4.

3. FRESP Example

It is desired to know the frequency response of the

transfer function

8(0.5 + s)
G(s) =

4 + 6s + 3s2 + s

The frequency range of interest is W,. = 0.1 rad/sec to 100

rad/sec. A Bode plot of the magnitude and phase is desired

but a Nyquist plot is not. The plots should be generated

from 100 values of frequency logarithmically spaced from

0.1 to 100.
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Referring to the steps described in the previous

section, FRESP User's Guide, this problem would be entered

as follows:

STEP 1. Enter "EXAMPLE CR " where <CR> = carriage

return.

STEP 2. Enter "8 <CR>."

STEP 3. Enter "F,1 <CR>."

STEP 4B. Enter ".5 <CR> 0 <CR>."

STEP 5. Enter "P,3 <CR> 4 <CR> 6 <CR> 3 <CR>."

STEP 6. Enter ".1 <CR>."

STEP 7. Enter "100 <CR>."

STEP 8. Enter "100 <CR>."

STEP 9. Enter "0 <CR>."

STEP 11. Enter "Y <CR>."

STEP 12. Enter "N <CR>."

The program will then continue to completion pro-

ducing the output seen in Figure 4.

The output begins with the program name and problem

identification. The transfer function gain is given followed

by the transfer function numerator and denominator each

listed as coefficients in ascending powers of s and then as

the real and imaginary parts of the roots.

The second page of output is tabular data. It

consists of the radian frequency and the transfer function's

corresponding real and imaginary parts, magnitude, and phase

in radians and in degrees. Although 100 frequency values
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were generated and their associated data points plotted,

tabular data appears only for every other data point. To

reduce unnecessary output and for formatting purposes the

following scheme is used for tabular data.

NUMBER OF FREQUENCIES TABULAR DATA
REQUIRED FROM STEP 8 PRINTED FOR

0 to 50 every freq.
51 to 100 every other freq.
101 to 150 every 3rd freq.
151 to 200 every 4th freq.

The next two pages of output are the Bode plots for

amplitude and phase. The plots are headed with the problem

identification and type of plot and below each plot is

sufficient information to allow proper interpretation of the

plotted data. Note that the phase angles are normalized to

aalways remain between -180 and +180 degrees.

This is the end of the output generated from the

example as it was input since a Nyquist plot was not desired.

A Nyquist plot is included as the last page of Figure 4 for

the sake of completeness.
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FREQUENCY RESPONSE
PROBLEM IDENTIFICATION - EXAMPLE

GAIN=8

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S

.5
- I

NUMERATOR ROOTS ARE
REAL PART IMAGINARY PART

-. 5 8

DENOMINATOR COEFFICIENTS IN ASCENDING POWERS OF S

4
6
3
1

DENOMINATOR ROOTS ARE
REAL PART IMAGINARY PART

- 1 -1.73285881

-I 1.73285081

-1 8

Figure 4 FRESP Output

62



Figure 4 (Cont.) PROBLEM IDENTIFICATION - EXAMPLE

W1AN FREQ. REAL PART IAGf1AWRY PART MIGITUDE PASEM(RD) PHASE(DEG)

.107226722 1.81715827 .8516283768 1.81836782 .8567189222 2.96598123

.123284674 1.92247187 .586342913 1.82415889 .0572828479 3.4128666

.141747416 1.2956848 .6663192682 1.83178223 .643257561 3.685595U6
.162975684 1.63885884 .97466284 1.84152594 .6716873348 4.1873832
.187381743 1.65094983 .0832923195 1.85424531 .079986087 4.53146802
.215443469 1.66665659 .926537766 1.87661542 .68a884164 4.33258435
.247707636 1.6869827 .168308178 1.89152705 .8928269474 5.27275758
.28463588 1.11285844 .187136157 1.11799565 .8959766558 5.4999249
.327454917 1.14575167 .111131384 1.1511286 .696691838 5.54863621
.376493582 1.18695955 .116216475 1.19286571 .6925986297 5.35542
.43287613 1.23774461 .181419568 1.24189277 .8817563658 4.68429638
.49772359 1.299"3767 .806188318 1.31153689 .8619809349 3.55124725
,572236769 1.3716815 .6422676713 1.37165954 .63881?8662 1.76534889
.657933228 1.45241093 -.829852383 1.45256188 -.9143787124 -.823839829
.756463332 1.53955782 -. 118868565 1.54487711 -.8765349743 -4.38513258
.86974988 1.62457894 -. 266081164 1.6453479 -,15956477 -9.11326869
1.6oo6$1 1.69236769 -.461538466 1.75411684 -. 266252952 -15.2551243
1.149757 1.71476725 -.732787826 1.36478688 -.493856578 -23.1389419
1.32194116 1.64366872 -1.87486971 1.96392254 -.579143836 -33.1825994
1.51991169 1.4183691 -1.4561"18 2.82289964 -. 799389724 -45.7979"1
1.74752941 965794658 -1.7451883 1.99459581 -1.06534155 -61.J395965
2.86923382 .386509559 -1.7966967 1.83654746 -1.36289719 -78.8424484
2.31612972 -. 13453679 -1.5559564 1.56176192 -1.65764796 -94.9418367
2.65618781 -. 423812889 -1.16877489 1.24324255 -1.91866312 -109.931338
3.85385554 -. 51737737 -. 803954307 .956676461 -2.13377179 -122.256162
3.51119177 -. 478086616 -. 52956775 .713394931 -2.36586561 -132.70578
4.6376173 -. 406613557 -. 342879268 .531884177 -2.44102701 -139.868595
4.641588 -. 32894126 -. 229992452 .396282748 -2.55662432 -146.185683
5.33669929 -. 259166135 -. 142546166 .295723333 -2.3862774 -151.182287
6.1359734 -. 21947626 -. 69219350 .221178189 -2.71163856 -155,3655
7.65480239 -,154626892 -. 85981062 .165791393 -2.77251189 -158.353287
8.1113884 -,11827898 -.8389127642 .124515475 -2,32375481 -161.789291
9.32683358 -. 69161962 -. 8253788175 .996 4855 -2.86722805 -164.279667
16.7226724 -. 6685723775 -.6165836577 .8795491932 -2.99436789 -166.484598
12.3284676 -. 852722615 -.6168538543 .8531914145 -2.9366967 -168,226669
14.1747418 -.639564317 -7.11247156-43 .946135662 -2.96344166 -169.792726
16.2975686 -. 829941465 -4.66519619E-63 .6393826696 -2.9872466 -171.143967
18.7381745 -. 6226835636 -3.62223S-3 .8228892671 -3.6674661 -172.311739
21.5443472 -. 0171782888 -2.8111627SE-63 .6172956174 -3.8251474 -173.322511
24.777439 -. 91305486 -1.32142716E-13 .6138724492 -3.64633486 -174.198418
28.483591 -9.84425637E-13 -8.6852 1676E-14 9.88249531E-63 -3.65359432 -174.958129
32.7454921 -7.45626919E-43 -5.709862K4E-04 7.47211725E-43 -3.86510255 -175.617583
37.493587 -5.63781716E-63 -3.754580ON-04 5.63 488-63 -3.87569595 -176. 19683
43.2876135 -4.265919 WE-13 -2.46911164E-04 4.2738587E-43 -3.08377726 -176.687485
49.772365 -3.22764824E-03 -1.6239163'-64 3.23173168-63 -3.69132096 -177.119708
57.2236776 -2.44196809E-93 -I.06818684E-04 2.44429615E-43 -3.8977757 -177.495374
65.793323 -1.84746146E-83 -7.62659939E-.5 1.84879722E-03 -3.1357722 -177.321939
75.6463342 -1.397M41E-43 -4.2235779E-65 1.39841956E-03 -3.10853252 -178.185858
86.974919 -1.65734283E-63 -3.4686657E-5 1.8577865IE-63 -3.11284111 -178.352722
10.80102 -7.9987935E-04 -2.90518 -45 890129964E-44 -3.1165876 -178.567383

Figure 4
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Figure 4 (Cont.)

-. PROBLEM IDENTIFICATION- EXAMPLE
NX BODE PLOT (AMPLITUDE) ]

II I m III. a I is I i II I A I I I I I

ABSCISSA -> COMMON LOG OF FREQUENCY
ORDINATE -) COMMON LOG OF AMPLITUDE
MINIMII FREQUENCY SHOWN ON ABSCISSA - .1 RADIANS/SEC
MAXIMIM FREQUENCY SHOWN ON ABSCISSA - 1ee RADIANS/SEC
AMPLITUDE LIMITS OF BODE PLOT ARE +-88 DECIBELS

Figure 4
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Figure 4 (Cont.)

PROBLEM IDENTIFICATION - EXAMPLE
,( BODE PLOT (PHASE) *X

-7

.. !

ABSCISSA -> COMMON LOG OF FREQUENCY
ORDINATE -> PHASE (DEGREES)

TIC MARKS SHOW MULTIPLES OF 98 DEGREES
MINIMUM FREQUENCY SHOI ON ABSCISSA = .1 RADIANS/SEC
MAXIMUM FREQUENCY SHOW'N ON ABSCISSA - 180 RADIANS/SEC
MAXIMUM PHASE ON ORDINATE SCALE - 90 DEGREES
MINIMUI PHASE ON ORDINATE SCALE = -180 DEGREES

Figure 4
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Figure 4 (Cont.)

PROBLEM IDENTIFICATION -EXAMPLE

11 NYQUIST PLOT

ABSCISSA -> REAL PART OF G(JW)
ORDINATE -> IMAGINARY PART OF G(JW)
TIC MARKS SHOW INTERVALS OF UNIITY
AXES CROSS AT ORIGIN

Figure 4
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B. RTLOC

1. Root Locus Program (RTLOC)

a. Introduction

When analyzing a system it is helpful to know the

location of the closed loop poles in the s-plane. These

closed loop poles are the roots of the characteristic

equation and determine the basic characteristics of the

transient response of a closed loop system. A root locus

plot is a plot of the roots of the characteristic equation,

usually as a function of the gain of the transfer function,

and therefore it is a valuable tool for system analysis.

b. Description of Program

The RTLOC program [Ref. 1: pp. 114-121] calcu-

lates and plots the roots of the equation

1 + KG(s) = 0

as a function of K. G(s) is assumed to be a rational function

of the form

G(s) = N(s)

D(s)

and the root locus becomes the locus of roots of DK(s) as K

varies where

DK(s) = D(s) + KN(s)

RTLOC uses an algebraic plus linear progression

scheme to vary K to give reasonable spacing of the roots.

DK(s) is obtained for each value of K and the subroutine PROOT

is used to calculate its roots.
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The scheme used to calculate values of K assumes

that K takes on only positive values. If K is to range

through negative value, the value of smaller magnitude (less

negative) mast be used as the minimum value. The routine

starts at the maximum (less negative) value and becomes

increasingly negative until the lower limit is reached.

If both positive and negative values are desired then two

separate runs must be made with only positive and only

negative values.

The RTLOC program has a feature that allows the

user to specify a range of s and (A) values around an area

of the root locus plot that is of interest. That area is

then enlarged and more closely spaced values of K are generated

giving more detail to the plot.

The major subroutines used are PROOT and SEMBL.

The subroutine SPLIT used in the FORTRAN version is replaced

by additional coding in the main program and by various

plotting subroutines.

PROOT. This subroutine uses a modified Bairstow

method for root extraction to determine the roots of a

polynomial with real coefficients. It is used to determine

the roots of the numerator and denominator of G(s) when it

is entered in polynomial form. It is also used to determine

the roots of DK(s) for each value of K generated.
K%

SEMBL. This subroutine determines the coeffi-

cients of a polynomial from the roots of the polynomial. It
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is used to determine the polynomial coefficients of the

numerator and denominator of G(s) when they are entered in

the factored form. This subroutine together with PROOT

provides the feature that G(s) may be entered in either

factored or coefficient form. It appears in the output in

both forms.

c. Program Translation Problems

In addition to the programing considerations

discussed in section II, two problems were encountered.

When a range of negative gains is entered the program cal-

culates only one value of K due to the logic of line 229 in

the FORTRAN code. This works correctly only for positive

ranges of gain. (Note that K is represented by the variable

G in the computer program.) In the BASIC version coding

was added to test the sign of the range of gains and modify

the logic to correctly handle the negative case.

The second problem was encountered when using

gains of very small magnitude necessary in using this

program for w'-plane analysis. The schemes used to generate

values of K for a reasonable spacing of the roots when plotted

worked fine for the magnitudes usually encountered in s-plane

analysis but was not flexible enough to handle gains of much

smaller magnitudes (e.g. 0 to 1E-3). To add this necessary

flexibility the following FORTRAN lines used to generate

values of gain G,

69



227 G°flwV*(-.---*--,-5

227 G=I.5*(G+SIGNG*0.05)
228 G=1.04*(G+SIGNG*O.02)

were modified by replacing the constant values 0.05 and 0.02

with the variables D1 and D2, respectively, where

DI=ABS(GMIN-GMAX)/700
D2=ABS(GMIN-GMAX)/1500

so that the gain increment was a function of the range of

gains of interest.

2. RTLOC User's Guide

Push "return" after each input.

STEP 1:

SCREEN PROMPT:

ROOT LOCUS PROGRAM (RTLOC)

THIS PROGRAM PLOTS THE ROOT LOCUS OF A
DESCRIBED SYSTEM.

PROBLEM IDENTIFICATION ->

REMARKS:

Label the problem. Type in any appropriate combina-

tion of letters, numbers, and/or symbols, excluding

commas and colons. This input is limited to 255

characters.

STEP 2:

SCREEN PROMPT:

INPUT THE RANGE OF GAINS (MIN,MAX) ->

REMARKS:

Enter the range of transfer function gains of in-

terest. Note that the minimum gain is the gain of

lowest absolute value.
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STEP 3:

SCREEN PROMPT:

'KEY' = P FOR POLYNOMIAL COEFFICIENT FORM
'KEY' = F FOR POLYNOMIAL FACTORED FORM

INPUT 'KEY', ORDER FOR NUMERATOR, N(S) ->

REMARKS:

Choose the preferred method of entering the

numerator polynomial of the transfer function

G(s).

STEP 4A (assumes coefficient form chosen):

SCREEN PROMPT:

INPUT POLYNOMIAL COEFFICIENTS

INPUT COEFFICIENTS IN ASCENDING PWRS OF s OR

W1

INPUT COEFFICIENT OF S^O ->

REMARKS:

Enter the coefficient along with its algebraic sign

as prompted. The program assumes that the

coefficient of the highest power of s is one.

STEP 4B (assumes factored form chosen):

SCREEN PROMPT:

INPUT POLYNOMIAL FACTORS

FOR FACTOR 1
REAL PART ->

IMAGINARY PART ->
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REMARKS:

Enter the factor with its algebraic sign. Do not

enter the associated root. (e.g. For "(s-1)" enter

1-"1".) After the real part of the factor is

entered the program asks for the imaginary part

allowing for input of quadradic factors. If a

non-zero imaginary part is entered the program

automatically enters its complex conjugate.

STEP 5:

SCREEN PROMPT:

'KEY' = P FOR POLYNOMIAL COEFFICIENT FORM
'KEY' = F FOR POLYNOMIAL FACTORED FORM

INPUT 'KEY', ORDER FOR DENOMINATOR, D(S) ->

REMARKS:

The denominator is entered just as described for the

numerator in steps 3 and 4.

STEP 6:

SCREEN PROMPT:

WOULD YOU LIKE TO LOOK AT ONLY A PART OF THE
ROOT LOCUS? (Y/N) ->

REMARKS:

Enter an "N" for the option of viewing the root locus

for the entire range of gains entered in STEP 2.

Enter a "Y" for the option of viewing only a portion

of the root locus defined by minimum and maximum

values of sigma and (A) of interest to the user.

Usually, it is best to view the entire root locus
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first then decide if any section needs to be

enlarged to reveal more detail and rerun RTLOC

to view only that portion.

STEP 7 (assumes "Y" entered in step 6):

SCREEN PROMPT:

ENTER SIGMA MIN, SIGMA MAX ->

REMARKS:

Enter the minimum and maximum values of sigma (i.e.

the real axis) of the portion of the root locus

plot of interest.

STEP 8 (assumes "Y" entered in step 6):

SCREEN PROMPT:

ENTER OMEGA MIN, OMEGA MAX ->

REMARKS:

Enter the minimum and maximum values of omega (i.e.

the imaginary axis) of the portion of the root

locus plot of interest.

STEP 9:

SCREEN PROMPT:

PRINT OUT OF GAIN DATA? (Y/N) ->

REMARKS:

This gives the user the option to suppress the print

out of the gain data if it is not needed. This saves

time and paper if only the root locus plot is desired.

After this step the program runs to completion.
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3. RTLOC Example

It is desired to know the root locus for the open

loop transfer function G(s) given by

G(s) = 1.2 + s

s(8 + 9s + s2)

for gain K of from 0 to 30. Referring to the steps des-

cribed in section 2, RTLOC User's Guide, this problem would

be entered as follows:

STEP 1. Enter "EXAMPLE <CR>" where <CR> = carriage

return.

STEP 2. Enter "0,30 <CR>."

STEP 3. Enter "F,1 <CR>."

STEP 4B. Enter "1.2 <CR> 0 <CR>."

STEP 5. Enter "F,3 <CR> 0 <CR> 0 <CR> 1 <CR> 0 <CR>

8 <CR> 0 <CR>."

STEP 6. Enter "N <CR>."

STEP 9. Enter "Y <CR>."

The program will then run to completion producing

the output seen in Figure 5.

The output begins with the program name and problem

identification. Next the transfer function numerator and

denominator are listed as coefficients in ascending powers

of s and then as the real and imaginary parts of the roots

(i.e. open loop zeros for the numerator and open loop poles

for the denominator). The minimum and maximum values of gain

are listed next.
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If the option to view only a part of the root locus

is selected, this fact is stated next followed by the ranges

of sigma and omega that are chosen. (See Figure 6)

The next several pages of output contain the gain

data which may be suppressed with the appropriate response in

step 9. The data point number is listed with the value of

gain and the real and imaginary parts of the corresponding

roots of the open loop system.

The last page of output contains the root locus plot

itself. It begins with the problem identification and

heading and ends with sufficient data listed to allow proper

interpretation of the plot.

Figure 6 shows the output from the same example

problem with the gain data suppressed and the option to

view only a part of the root locus chosen.
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ROOT LOCUS
PROBLEM IDENTIFICATION - EXAMPLE

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S OR N'

1.2
1

OPEN-LOOP ZEROS
REAL PART IMAGINARY PART

-1.2 0

DENOMINATOR COEFFICIENTS IN ASCENDING POWERS OF S OR N'

0
8
9
I

OPEN-LOOP POLES
REAL PART IMAGINARY PART

-1 0
-8 0

MIN GAIN MAX GAIN
0 30

Figure 5 RTLOC Output

76

r -lC....-L,. L-- C



Figure 5 (Cont.)

GAIN = ROOTS ARE
REAL PART I1lAG. PART
-1 8
-8 8

g0

2 GAIN = .8492857143 ROOTS ARE
REAL PART IMAG. PART

-7.48891563E-83 8
-. 998588111 0
-7.99481898 8

3 GAIN = .185964286 ROOTS ARE
REAL PART IMAG. PART

-. 8 159695125 8
-. 996917641 8
-7.98711284 8

4 GAIN = .171144643 ROOTS ARE
REAL PART I'AG. PART
-. 8258689696 0
-. 994965313 0

-7.97916572 8

5 GAIN = .246182854 ROOTS ARE
REAL PART IWAG. PART

-. 837328849 8

-. 992664433 0

-7.97888752 8

6 GAIN = .332383876 ROOTS ARE
REAL PART IMAG. PART

-. 8586884588 8
-. 989941249 8

-7.95945829 0

P GAIN = .431434251 ROOTS ARE

REAL PART IMAG. PART
-. 8668224557 8

-. 98678 1776 8

-7.94727577 8

8 GAIN = .545435183 ROOTS ARE
2 REAL PART IMAG. PART

-. 8839456946 0
-. 982824229 8
-7.93323888 0

9 GAIN a.676536883 ROOTS ARE
REAL PART IMAG. PART

.184834979 8
-. 978147688 8

-7.91781742 8

18 GAIN = .82738221 ROOTS ARE

REAL PART IMAG. PART
-. 972453845 8

-7.89829238 0
-. 129253772 8

Figure 5
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3. .

Figure 5 (Cont.)

11 GAIN = 1.80868326 ROOTS ARE
REAL PART IMAG. PART
-. 965438583 0
-7.87665069 8
-. 15791873 8

12 GAIN - 1.2887146 ROOTS ARE
REAL PART IMAG. PART

-. 956668582 8
-7.8516177 8
-. 191721725 8

13 GAIN = 1.42936789 ROOTS ARE
REAL PART IMAG. PART
-. 945447526 8
-7.82263429 0
-. 231918189 8

14 GAIN = 1.69385879 ROOTS ARE
REAL PART IMAG. PART
-7.78903912 0
-. 288258299 8
-. 938782581 8

15 GAIN - 1.99638332 ROOTS ARE
REAL PART IMAG. PART
-7.75884614 8
-. 339587185 8
-. 918446682 8

16 GAIN = 2.34583453 ROOTS ARE
REAL PART IMAG. PART
-7.78471555 8
-. 414824269 8
-. 888468187 8

17 GAIN = 2.74607543 ROOTS ARE
REAL PART IMAG. PART
-7.65191587 8
-. 526147285 0
-. 827936925 8

18 GAIN = 3.28727245 ROOTS ARE
REAL PART IMAG. PART
-7.59827312 8
-. 784863441 -. 181133243
-. 784863441 .181133243

19 GAIN = 3.73764984 ROOTS ARE
REAL PART IMAG. PART
-7.51818122 8

-. 748949392 -. 218123799
-. 748949392 .213123799

28 GAIN = 4.34758211 ROOTS ARE
REAL PART IMAG. PART
-7.43338483 8
-. 783347989 -. 2978 19384

-. 783347989 .2978 19384

Figure 5
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Figure 5 (Cont.)

21 GAIN = 5.04900514 ROOTS ARE
REAL PART IMAG. PART
-7.33323262 0
-. 833383692 -. 362332638
-.833383692 .362882638

22 GAIN = 5.85564162 ROOTS ARE
REAL PART IMAG. PART
-7.2144689 0
-. 892765554 -. 420657402
-.892765554 .420657402

23 GAIN = 6.78327358 ROOTS ARE
REAL PART IMAG. PART
-7.07248055 0
-. 963759725 -. 471271626
-.963759725 .471271626

24 GAIN = 7.85005033 ROOTS ARE
REAL PART IMAG. PART
-6.9010354 0
-1.0494823 -.513427903
-1.0494823 .513427903

25 GAIN = 9.07684359 ROOTS ARE
REAL PART IMAG. PART
-6.69112225 0
-1.15443888 -.543259781
-1.15443888 .543259781

26 GAIN = 10.4876559 ROOTS ARE
REAL PART IMAG. PART
-6.42872813 0
-1.28563594 -.552876334
-1.28563594 .552076334

27 GAIN = 12.1100899 ROOTS ARE
REAL PART IMAG. PART
-6.08944969 0
-1.45527515 -.518280319

-1.45527515 .518280319
28 GAIN = 13.9758891 ROOTS ARE

REAL PART IMAG. PART
-5.62148192 0
-1.68929904 -.360139054
-1.68929904 .360139954

29 GAIN = 16.1215582 ROOTS ARE
REAL PART IMAG. PART
-2.6433642 0
-4.84656548 0
-1.51007033 0

30 GAIN = 18.5898777 ROOTS ARE
REAL PART IMAG. PART
-3.80149761 -1.23137034
-3.80149761 1.23137034
-1.39780479 0

Figure 5
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Figure 5 (Cont.)
31 GAIN = 21.426725 ROOTS ARE

REAL PART IMAG. PART
-3.82838189 -2.11787032 p
-3.82838189 2.11737032
-1.34323622 0

32 GAIN = 24.6988195 ROOTS ARE
REAL PART IMAG. PART
-3.8449682 -2.79855914
-3.8449682 2.79855914
-1.3100636 0

33 GAIN = 28.4428081 ROOTS ARE
REAL PART IMAG. PART
-3.85636161 -3.41216555
-3.85636161 3.41216555
-1.28727678 0

.4

Figure 5
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Figure 5 (Cant.)

PROBLEM IDENTIFICATION -EXAMPLE

XX ROOT LOCUS PLOT XX

4+4

ORINT IMGNR OMG)AI

TIC MARKS SHOW INTERVALS OF I
THE PLOT FRAME LIMITS ARE:

ABSCISSA, -8 TO I
ORDINATE, -4 TO 5

Figure 5
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ROOT LOCUS
PROBLEM IDENTIFICATION - EXAMPLE WITH OPTION

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S OR W'

1.2
1

OPEN-LOOP ZEROS
REAL PART IMAGINARY PART

-1.2 0

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S OR W"

OPEN-LOOP POLES
REAL PART IMAGINARY PART

-1
-8 8

MIN GAIN MAX GAIN
8 38

OPTION TAKEN

SIGMA MIN = -2 SIGMA MAX =
OMEGA MIN - -1 OMEGA MAX = I

Figure 6 RTLOC Output with Option
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Figure 6 (Cont.)

PROBLEM IDENTIFICATION - EXAMPLE WITH OPTION

ROOT LOCUS PLOT

ABSCISSA-> REAL (SIGMA) AXIS
ORDINATE IMAGINARY (OMEGA) AXIS
TIC MARKS SHOW INTERVALS OF I
THE PLOT FRAME LIMITS ARE:

ABSCISSA, -2 TO I
ORDINATE, -I TO 2

Figure 6
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V. w'-PLANE ANALYSIS

Digital control systems are becoming more and more common.

Digital control laws have unique characteristics that can

only be approximated by using classical techniques in the

continuous s domain.

In the w' domain all analog control system design tech-

nology transfers completely for digital control system design.

An important advantage of the w' domain is that non-minimum

phase effects of the sampling and data-hold operations and

of sampling rate can be directly accounted for without

approximation while using conventional frequency domain

design and analysis tools such as root locus and Bode

plots. [Ref. 4]
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A. BACKGROUND

This s domain is used for continuous system analysis.

When a digital system is considered the z, w, or w'domain

must be used. These domains are related as shown below.

sT
z=e

z-1 sT
w =-=tanh-

z+1 2

w= (2/T) w

where T is the sampling period and

x x
e -e

tanh x =
e x + e x

In an s-plane root locus plot the region of stability is

the left half plane, that is all roots with negative real

parts. This region of stability is mapped into a unit circle

with its center at the origin in the z-plane. By use of

the bilateral transformation shown above, the stability region

of the z-plane is mapped back into the left half plane to

form the w-plane. The w'-plane takes it a step farther by

multiplying the w-plane by the factor 2/T where T is the

sampling period. This gives the w'-plane the property

that not only is the region of stability the left half plane

as in the continuous s-plane but w' approaches s as the sam-

pling period T approaches zero [Ref. 5].
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B. TRANSFER FUNCTION APPROACH USING THE w'-PLANE

In this section the second order system

* 10
K

- ;s(s+10)

is analyzed using the two transfer function programs dis-

cussed in part IV of this thesis. It is then converted

to the w'-plane and analyzed for periods of .001 seconds,

.01 seconds, and .1 seconds using the same two transfer func-

tion programs. These results are used to gain insight into

w'-plane analysis.

The system is converted to the w'-plane by adding a

sampler and a digital to analog converter in the form of a

zero order hold. This modified system is shown below.

1-eS 10K

s s(s+10)

The new open loop transfer function is transformed to

the z-plane and then to the w'-plane as follows:

1
G(s) = 10K(1-e sT)

s8(s+10)
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1 Tz(1-e10 )z
G(z) =1OK(1-z -1010T2-1~-1(-

T 1-e10

z--10(z-e-

For the period

T=. 001

G(z) reduces to

4.98337 x 10 6 K(z+.996681)
G(z)=(1

(z-1)(z-.990049834)

Similarly, for

T=. 01

4.837418 x 10O4 K(z+.9672185)
G(z) =

(z-1) (z-.904837418)

And for

T=. 1

.03678794412 K(z+.718281827)
G(z) =

(z-1)(z-.3678794412)

Now G(z) is converted to the w' domain using the rela-

tilonship
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1 + T/2 w'
1 - T/2 w'

For period

T=. 001

1 + .0005 w'
Z=

1 - .0005 w'

Substituting into equation (1) gives

4.98337 x I0-6 K (1-.0005w + .996681)
1-. 0005w '

G(w') = ooo _ _ ooo w

__,___5w (1+.0005w . .990049834):0005w, 1-.0005w'

which reduces to

-4.156878 x 1079 K (w' + 1202819) (w' - 2000)
G(w') = (2)

w' (w' + 9.9999)

Note that the gain is 1.OK which is the same as the s domain

gain. Similarly, for

T=. 01

1+.005w'
Z=

1-. 005w'
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-4.1625027 x 10-6 K(w'+12002.00418)(w'-200)
G(w') = (3)

w' (w' + 9.991674985)

And for

T=.1

1+.05w'
Z=

1-.05w'

-.0037882843 K(w' + 121.9858708)(w'-20)
G(w') = (4)

we (wI + 9.242343139)

Note again that the gain is 1.0K also in equations (3) and

(4).

1. Frequency Response

a. s-Plane

The open loop transfer function of the system

in the s domain is

10KG(s)=
s(s+10)

The frequency response of G(s) with a gain K of 5 is described

by the output of the FRESP program shown in Figure 7. From

the Bode plots it is seen that the gain margin is infinite

and the phase margin is 65.1 degrees.
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b. w'-Plane with a Period of .001 Seconds

The open loop transfer function for the equiva-

lent sampled system is represented by equation (2) for a

period T of .001 seconds. This transfer function is

entered into the FRESP program as if w' were an s. The

resulting output in Figure 8 is interpreted as described

earlier in the thesis keeping in mind that all references

to s are actually referring to w'. From this output it

is seen that the gain margin is no longer infinite as it

was in the continuous case but it is still quite high at 50

dB. The phase margin has dropped slightly from 65.1 degrees

to 64.6 degrees.

c. w'-Plane with a Period of .01 Seconds

If the sampling rate of the system is decreased

so that the sampling period is .01 seconds, then the open

-loop transfer function is represented by equation (3).

Inputting the transfer function into FRESP results in the

output shown in Figure 9. From the Bode plots the gain

margin is found to be 32 dB. This is down from 50 dB for

the case of a period of .001 seconds indicating a decrease

in stability. The phase margin is 64.5 degrees which is also

lower than the previous case but only by one tenth of a

degree.

d. w'-Plane with a Period of .1 Seconds

If the period is again increased to .1 seconds,

the open loop transfer function is represented by equation
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(4). Entering this transfer function into FRESP produces

the output seen in Figure 10. From this output the gain

margin is found to have decreased to 13.2 dB and the phase

margin to 53.7 degrees.

e. Summary of Frequency Response Results

The table below is a brief summary of the gain

and phase margins found in each case.

CASE GAIN MARGIN PHASE MARGIN

s-plane infinite 65.1 deg.
w', T=.001 50 dB 64.6 deg.
w', T=.01 32 dB 64.5 deg.
w', T=.1 13.2 dB 53.7 deg.

It can be seen from this table that the con-

tinuous case is the most stable. The sampled cases become

less stable as the sampling period increases. It is also

noticed that the gain margin is more sensitive to changes

in the sampling period than the phase margin.

2. Root Locus

Now a comparison is made using the root locus program

using the same cases used above.

a. s-Plane

If the open loop transfer function

10K
G(s) =

s(s+10)

is entered into the RTLOC program, the result is the output

in Figure 11. The root locus plot shows that the system

never becomes unstable at any gain.
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b. w'-Planewith a Period of .001 Seconds

If the equivalent sampled transfer function with a

sampling period of .001 seconds represented by equation (2)

is entered into RTLOC, the output will be that found in

Figure 12. From the root locus plot it can be seen that

there is a slight tendency for the plot to curve toward the

right half plane as it moves further from the real axis. The

tendency is so slight that it will take a very large gain

*. to drive the system unstable.

c. w'-Plane with a Period of .01 Seconds

If the sampling period is increased to .01 seconds

the transfer function is represented by equation (3).

Entering this transfer function into RTLOC results in the

output seen in Figure 13. It can be seen that the tendency

for the curve to bend toward the unstable right half plane

is increased indicating that a lower value of gain than in

the previous case will drive the system to instability.

d. w'-Plane with a Period of .1 Seconds

When the sampling period is further increased to .1

seconds represented by equation (4), the resulting RTLOC

output is that seen in Figure 14. In the root locus plot

for this case the tendency to become unstable is much more

pronounced. Here the plot bends into the right half plane

within the limited boundaries of the portion plotted. It

becomes unstable for values of gain K greater then 24.6.
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e. Summary of Root Locus Comparison

It can be seen that the continuous system

10K
G(s) -

s(s+1O)

is always stable. When this system is sampled it can be

seen by equations (2), (3), and (4) that a zero is added

in the right half plane making it a non-minimum phase

system. It can also be seen that by decreasing or increasing

the sampling period the distance of this zero from the

origin increases or decreases respectively. The closer

this zero is to the imaginary axis, the greater effect it

has on bending the root locus into the right half plane.

This effect can be seen by examining the root locus plots

in Figures 11 through 14.
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FREQUENCY RESPONSE
,* PROBLEM IDENTIFICATION - EXI S-PLANE

GAIN=50

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S

1

I

DENOMINATOR ROOTS ARE
REAL PART IMAGINARY PART

-t

4.

.5 I

Figure 7 s-Plane Frequency Response Example
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Figure 7 (Cont')PROBLEM IDENTIFICATION - EXI S-PLANE

IAI FKQ. REAL PART IG1INARY PART KAMITUOE PHASEURD) PHASE(DEG)

M167226722 -. 49942519 -46.624866 46.6274869 -1.58151864 -".6143755
.123284674 -. 49924616 -46.5563792 46.5534598 -1.58312422 -9.7863685
.141747416 -49999558 -35.2669256 35.2784684 -1.5849617 -908121336
.16297584 -. 498723 -36.6713897 38.6754627 -1.5879244 -9.9337311.197381743 -.492452 -26.6741303 26.6788128 -1.58953236 -91.873528

.215443469 -. 49976027 -23.1971769 23.225599 -1.59233739 -91.2342445
.24770763U -. 499693392 -26.1727084 26.1788964 -1.59562 7 -91.419654
.28433588 -. 499594763 -17.54173 17.5488429 -1.SM26904 -91.313988
.327454917 -. 49946444 -15.2529223 15.2616977 -1.66353617 -91.8755439
.376493582 -. 499292266 - 13.2616468 13.2716365 -1.66842796 -92.1561667
.43287613 -. 499064843 -11.528451 11.5M39417 -1.61465698 -92.4786859
.497762359 -. 48764522 -10.9213413 19.8337455 -1.62652559 -92.8493693
.572236769 -. 498368669 -8.76912349 8.72337108 -1.62795771 -93.2751396
.657933228 -. 497844948 -7.566865 7.58316626 -1.63649581 -93.7642907
.756463332 -. 49715595 -6.57299774 6.5968749 I.6629891 -94.326813
.869749668 -. 49624668 -5.7562399 5.72716381 -1.65755295 -94.978225
1.666661 -. 495649563 -4.95649503 4.97518594 -1.67846563 -95,7166381

1.149757 -. 49347653 -4.2920717 4.32828294 -1.686942 -96.5588596
1.32194116 -.491412428 -3.71735478 3.74969562 -1.76222942 -97.36532
1.51991169 -. 488710161 -3.2153865 3.25231425 -1.721633@5 -9.6423427
1.74752841 -.4851835 -2.7763966 2.81847143 -1.743 -99.9125431
2.00923362 -. 480598168 -2.39194839 2.43975239 -1.7687957 -181.360829
2.31612972 -. 474668375 -2.65472687 2.1884675 -1.79782663 -103.667915
2.6668781 -. 46765569 -1.75941517 1.81938454 -1.83841685 -104.874854
3.8538SM -. 457347668 -1.49768721 1.56588448 -1.86718669 -166.981955
3.51119177 -.44512313 -1.26772"5 1.34360168 -1."846789 -109.347194
4.6376173 -. 429931824 -1.66497394 1.14848199 - 1.95448982 -111.984658
4.6415888 -. 411372483 -. 886275139 .97793168 -2.0536225 -114.898834
5.33669929 -.38916454 - .826568597 -2.66101572 -118.887544
6.13596734 -.3 41793 -. 591993669 .6945%959 -2.12114917 -121.532939
7.65486239 -. 333844761 -. 473216233 .57125166 -2.18519689 -125.26226
9.1113684 -. 361586297 -. 371802282 .478735431 -2.25228766 -129.646623

- 9.32663358 -. 267415569 -. 286746946 .39298a633 -2.32133517 -133.02755
16.7226724 -. 232584424 -. 2166961 .318633669 -2.3165392 -136.997347
12.3284676 -. 19419696 -. 166944331 .2554867 -2.46816143 -146.953479
14.1747418 -,166155293 -. 117219273 .293341927 -2.527192 -144.797843
16.297586 -. 13675M21 -.6839135631 .166451278 -2.59123991 -148.467164
18.7381745 -. 11835455 -.6591495479 .125631675 -2.65137337 -151.912558
21.5443472 -. 886275129 -.6411372468 .6977693894 -2.76712684 -155.16126824.7707639 -. 070481732 -.62 42 .675524445 -2.75789927 -158.16645

28.4803591 -. 8548768595 -.6192683173 .0581613681 -2.8639212 -168.652?08
32.7454921 -. 1426523898 -. 13254234 .8445969567 -2.4526239 -163.619147
37.649357 -. 8329494891 -8.75167342E63 .1340919437 -2.88197823 -165.125248
43.2876135 -. 253316228 -5.85193332E-03 .6259987738 -2.91456245 -166.92187
49.7712365 -.619418304 -3.967971-63 .6197895833 -2.9433952 -168.63273
57.2236776 -. 0148167935 -2.58V27671E-63 .1156413339 -2.9858686 -179.18759
65.7933236 -. 11289382 - 1.71595499E 43 .1114194986 -2.99675663 -71.357759
75.6 342 -8.58757143E-43 -1.13UN63-E63 8.66229157E-63 -3.8161666 -172.469563
86.9749619 -6.52346967E-03 -7.5904466E-44 6.5664452E-63 -3.62711966 -173.441243

-: 166.6H62 -4.954949%E3 -4.95649488E-i4 4.97595863 -3.0419245 -174.289472
Figure 7
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Figure 7 (Cont.)

PROBLEM IDENTIFICATION - EXI S-PLANE
M BODE PLOT (AMPLITUDE) MM

I I I I I Ills I I I I I1I3 I I I I I I I

ABSCISSA -) COMMON LOG OF FREQUENCY
ORDINATE -> COMMON LOG OF AMPLITUDE
MINIMUM FREQUENCY SHO4N ON ABSCISSA - .1 RADIANS/SEC
MAXIMIU FREQUENCY SHOWIN ON ABSCISSA - 1 RADIANS/SEC
AMPLITUDE LIMITS OF BODE PLOT ARE '-68 DECIBELS

Figure 7
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Figure 7 (Cont.)

9. .. PROBLEM IDENTIFICATION - DI S-PLANE
XX BODE PLOT (PHASE) XX

ABCSA- COMO O O RQEC

ORIAE->PAE(DGES

TI AK HWMLIPE F9 ERE
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FREQUENCY RESPONSE
PROBLEM IDENTIFICATION- EXI W'-PLANE T=.81 E<TEJDE:C

GAIN=-2.878439E-88

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S

-2. 485638E+09
1286819
1

NUMERATOR ROOTS ARE
REAL PART IMAGINARY PART

J

-1202819 8
.:2888 8

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S

8
9.9999
1

DENOMINATOR ROOTS ARE
REAL PART Irt.AGINARY PART

8 0
-9.?999 8

*! Figure 8 w'-Plane Frequency Response Example, T=.O01
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Figure 8 (Cont.)PROBLEM IDENTIFICATION - E'I N"-PLAH'E T=.C, Et E

MDIM FRO. REM PART IMAGINRY PART aGNITUDE PIA4SE(PD) P.ISEL G)

.109749977 -.582442517 -45.5528224 45.5555933 -1.531829.31 -99.6319750

.132194115 -. 502415237 -37.81 8 37.3296272 -I.58468114 -. , -,59

..159228279 -. 3237564 -31.393595 31.3976144 -1.5367975 -93.?ik3321

.191791826 -. 502318262 -26.6685212 26.653618 -1.5966965 -71. :34275
* .23161297 -. 562235605 -21.6322985 21.S381279 -1.59496911 -?1.339271

.278255941 -. 562114261 -17.955175 17.9621944 -1.59875396 -?1.6613375
.3351662U -. 61939186 -14.9914781 14.9899294 -1.6944675 - ;.?92243
.403711727 -. 56 85399 -12.3651825 12.3753556 -1.61134656 -92.32339
.48626016 -.531317654 -19.2582291 18.2704714 -I.61962733 -12.77 4" 6
.M85792684 -.59785675 -8.56746911 8.52219552 -1.62959269 -73.633171
.785486234 -.5901444 -7.95212636 7.36933632 -1.64153856 -74.3556715
.349753439 -.4996591 -5.84169677 5.3629 98 -1.655?9383 -94.0814465
1.a2353163 -. 497293211 -4.33417169 4.85968216 -1.67339621 -. 5.3724131
1.=3284675 -.494979637 -3.99464784 4.82519766 -1.69487869 -7.3635939
1.48496827 -.491641952 -3.29467918 3.33956876 -1.71395U61 -58.4891384
1.786954 -.486924764 -2.78832265 2.75174622 -1.74868424 -:38.72263
2.1544347 -.436213976 -2.21734474 2.26374986 -1.78467386 -192.21,9?3
2.59512423 -.470795i148 -1.89459822 1.8659617 -1.82599689 -!a4.S21997
3.12571587 -. 457776887 -1.45655167 1.52679426 -1.37530956 -197.447362
3.76493583 -. 446116426 -1.16234762 1.24288696 -1.93275843 -1!8.738943
4.53487854 -.4167883 -.913559865 1.31414347 -1.99231444 -14.,23672,
•5.46227726 -. 3876256 -. 70396767 .3W 41916 -2.67346959 -113.-61899
6.5793323 -. 3,6693265 -. 52922388 .634872995 -2.15691713 -123.53a726
7.92482965 -. 3186U54899 -.386325631 .494484456 -2.24489,56 -123.623212
9.54548465 -.262928631 -.272839121 .373962923 -2.3371426 -133.9412e8
11.4975761 -.216412607 -. !8665221 .285394663 -2.43148859 -139.314484
13.3488638 -.172211076 -.122546894 .211363185 -2.5231181 -144.36497
!6.816655 -.132845421 -.3781417391 .154123443 -2.68988337 -149.535356
26.9923392 -.3997664491 -.0484983,92 .116885129 -2.68981861 -154.115275
24.2612829 -.6732817618 -.8292485321 .978999623 -2.76134146 -153.241916
29.1565389 -.1529678594 -. 8172M45195 .8556624389 -2.0256786 -16i.399516
35.1119177 -.8377808078 -.8106263967 .39 8112746 -2.38166281 -165.107176
42.21924292 -. 8266059997 -5.70071876E-43 .6272098748 -2.r9351822 -167.786386
56.9413868 -.8186452458 -3.17815952E-93 .818912829 -2.97317316 -179.350621
61.3596735 -.6136613548 -1.71211774E-83 .9131136927 -3.31965846 -"72.493685
.3.9672212 -9,83396706E-43 -8.84629@75E-04 9.8771763E-03 -3.84398135 -174.467347
89.6215097 -6.26175123E-93 -4.23627939E-44 6.27602332E-3 -3.07413774 -17S.135131
197.226724 -4.33276499E-03 -1.71309219E-44 4.3361!OSE-03 -3.1626752 -1.73,33
129.154968 -2.99443621E-43 -3.8.10236E-05 2.99468583E-03 -3.12870183 -17, .,614,'
155.57616 -2.66778485E-03 2.75163739E-05 2.66796712E-43 3.121823631 !"79.237667
187.381745 -1.42787452E-63 5.79369751E-95 1.42821389E-93 3.1616462 177.7113
225.701975 -9.84562339E-04 6.69616814E-05 9.36776931E-94 3.97368161 176.169647
271.858828 -6.78999683E-64 6.68301543E-45 6.3228692E-64 3.84348418 174.373861
327.454921 -4.68210766E-44 6.19266743E-45 4.72287599E-84 3.6191615 172.46644

394.429612 -3.22819434E-94 5.3093,949E-65 3.27486967E-04 2.37255685 179.31'623
475.681623 -2.22557794E-04 4.78562267E-95 2.27643616E-94 2.92991521 167.646188
572.236775 -1.5342924E-04 4.39341491E-45 1.5879472E-94 2.88986856 165.3 6669
689.261221 -1.05768475E-14 3.46757113E-95 1.11387568E-94 2.32478945 161.348571
836.217582 -7.29133323E-45 2.91941137E-05 7.35376394E-5 2.7688643 15.:8!929
1860.02 -5.82650559E-05 2.44556446E-05 5.5398662E-65 2.68377664 154.950174

Figure 8
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Figure 8 (Cont.)

PROBLEM IDENTIFICATION - EXI W'-PLANE T-.81 EXTENDED
*XX BODE PLOT (AMPLITUDE) X

*5, I iI IllIllI I I 11I I I IIi i I I I IJ I I I I I I II I

.5

I I I IIIII I I I I I I I I If "llf

ABSCISSA -> COMMON LOG OF FREQUENCY
ORDINATE -> COtMMON LOG OF AMPLITUDE
MINIMUM FREQUENCY SHOCfN ON ABSCISSA - .1 RADIANS/SEC
MAXIMUM FREQUENCY SHOW1JN ON ABSCISSA - I00 RADIANS/SEC
AMPLITUDE LIMITS OF BODE PLOT ARE +-180 DECIBELS

Figure 8
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Figure 8 (Cont.)

PROBLEM IDENTIFICATION - EXI N'-PLANE T-.81 EXTENDED

BODE PLOT (PHASE) E

I I I IIIII I I I IIIIfI I 11 1 1 I I I11 1 I I il11

! I I III I I !I S ill

ABSCISSA -> COfMON LOG OF FREQUENCY
ORDINATE PHASE (DEGREES)

TIC MARKS SHOW MULTIPLES OF 98 DEGREES
MINIMUM FREQUENCY SHOW4N ON ABSCISSA = .1 RADIANS/SEC
MAXIMUM FREQUENCY SHOW1N ON ABSCISSA - 100e RADIANS/SEC
MAXIMUM PHASE ON ORDINATE SCALE - 180 DEGREES
MINIMUM PHASE ON ORDINATE SCALE - -186 DEGREES

Figure 8
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FREQUENCY RESPONSE
PROBLEM IDENTIFICATION - EXI M'-PLANE T.8l

GAIN--2.88125135E-85

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S

-2468488.84
11992.8842
I

NUMERATOR ROOTS ARE
REAL PART IMAGINARY PART

-12882.8842 8
288 8

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S

8
9.99167498
I

DENOMINATOR ROOTS ARE
REAL PART IMAGINARY PART

8 8
-9.99167498 8

Figure 9 w'-Plane Frequency Response Example, T=.01
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Figure 9 (Cont.)PROBLEM IDENTIFICATION - EXI W'-PLANE T=.Ci

RDIM4 FREQ. REAL PART INA61NARY PART INI4TUE PK(1) PHASE(DEG)

.1172262 -. 52939547 -46.6245341 46.6274892 -1.582n5477 -98.6458936

.123294674 -. 32492188 -46.591649 46.5534623 -1.58374164 -90.7416869

.141747416 -. 52489436 -35.2665654 35.274713 -1.5856789 -9.8527412

.1629764 -. 5248603"6 -36.6789756 36.6754"62 -1.58793731 -9l.?944198

.167381743 -. 524815428 -26.6736542 26.6788168 -1.59"46926 -91.127286

.215443469 -. 524756133 -23.1966296 23.2625644 -1.5934146 -91.2959641

.247717636 -. 524677539 -26.1726793 29.1789016 -1.5968866 -91.4899677

.294N3598 -.52457381 -17.5410667 17.5488488 -1.66869363 -91.7129879

.327454917 -.524436749 -15.2523099 15.2611645 -1.68516741 -91.9693511

.37649W82 -. 524255672 -13.268653 13.2718444 -1.61331038 -92.2643214

.43287613 -.524616491 -11.527947 11.5398569 -1.61622129 -92.6826918

.49772359 -.523736643 -16.6 2796 16.8337559 -1.62381398 -92.9918844

.572236769 -. 523283694 -8.76767398 8.72338367 -1.63681873 -93.439364
.45793322 -.52273353 -7.56513572 7.58317466 -1.63978443 -93.9527666
.75643332 -. 52m16818 -6.5718639 6.59689681 -1.65868685 -94.5427323
.869749609 -. 5211=522 -5.7343655 5.72718215 -1.661"113 -95.219546
1.6666660I -. 519793666 -4.9479794 4.9M782739 -1.67546416 -95.9970594
1.149757 -.51913936 -4.2891243 4.32638737 -1.69161689 -96.3881655
1.32194116 -. 515935 -3.71405452 3.74972327 -1.76883614 -97.9691336
1.5191169 -. 513126826 -3.21161357 3.25234698 -1.72922959 -99.dT7593
1.7475M41 -.569417817 -2.77269166 2.818S6943 -1.75253532 -160.412913
2.66923382 -.504596244 -2.38764633 2.43979662 -1.77911889 -181.93684
2.31112972 -. 49936676 -2.04916171 2.1688924 -1.889367 -193.66913
2.65669781 -. 46350539 -1.75212349 1.81944569 -1.84367592 -195.634887
3.853854 -. 481148485 -1.4"52834 1.56595572 -1.88243366 -167.855568
3.51119177 -. 467296883 -1.25981191 1.3436=8 -1.925981 -113.351133
4.6373173 -.451325898 -1.65619372 1.14858194 -1.974624" -113.137719
4.641599 -. 431817282 -.87M628211 .97721191 -2.62849743 -116.224383
5.336692 -. 4U9476439 -. 71746596 .826711149 -2.88759426 -119.616383
6.13596734 -. 381235751 -.586776 I .694719472 -2.15167917 -123.28218
7.0540239 -. 350349774 -. 46136989 .579324936 -2.22925484 -127.21 1277
8.1113684 -. 316459229 -.359537358 .47897369 -2.29255366 -131.353696
9.32663358 -. 286579464 -.274266592 .39236687 -2.3675696 -135.651815
16.7226724 -.24467236 -.28446504 .318348655 -2.444139 -146.638842
12.3294676 -. 38143963 -. 148767675 .255843176 -2.5211461 -144.445353
14.1747418 -.174292984 -.165522173 .263739772 -2.59716482 -148.81U36
16.297586 -. 1434353 -. 0728676818 .16684863 -2.67156109 -153.66923
18.7381745 -. 116242624 -. 0488750465 .126699635 -2.74357614 -157.19539
21.5443472 -. 929495537 -. 8317658744 .3982674136 -2.81285769 -161.164932
24.7767639 -. 1734941767 -. 8197249894 .6766854429 -2.87935869 -164.974701
28.4863591 -.657538451 -.611569167 .6587646M732 -2.94325927 -168.636395
32.7454921 -. 0447358616 -6.14914619E-63 .6451564981 -3.064418 -172.173546
37.6493567 -. 345626152 -2.64835974E-13 .834663932 -3.86511716 -175.61834
43.2976135 -.6265759M2 -4.599176 9E-44 .1265799146 -3.12429864 -179.008617
49.7712365 -.1263593365 8.48N679SE-04 .6283769694 3.6996478 177.614962
57.2236776 -. 155512733 1.576826W-13 .6156324331 3.64155195 174.216856
65.79= -.11115m 1.9329344E-03 .8126119368 2.979212 17.739887
75.646= -9.$2265 E-43 2.85532664E-13 9.2537"12-13 2.9176184 167.167281
86.974619 -6.85693251E-63 2.8361868K-03 7.15476944E-13 2.85381322 163.465675
1N.666862 -5.21NMR689E-.3 I.9M7213Z 3 5.5=963487E-63 2.758"6 159.618253

Figure 9
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Figure 9 (Cont.)

2'.!

PROBLEM IDENTIFICATION - EXi W'-PLANE T-.81
MN BODE PLOT (AMPLITUDE) MM

II I I I AI I I I I[ I I I - I I I

-J

ABSCISSA -> COMMON LOG OF FREQUENCY
ORDINATE -> COMMON LOG OF AMPLITUDE
MINIMUM FREQUENCY SHOWN ON ABSCISSA - . I RADIANS/SEC
MAXIMUM FREQUENCY SHOWN ON ABSCISSA = 10 RADIANS/SEC
AMPLITUDE LIMITS OF BODE PLOT ARE +-68 DECIBELS

.,

Figure 9
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Figure 9 (Coat.)

PROBLEM IDENTIFICATION E XI W'-PLANE T-n.01
XX BODE PLOT (PHASE) 1

I~~ 9 111 1 1 1 lift11

t t 4j

ABCSA->CMO.LGO REUNY

ORIAE->PAE(DGES

TI AK HWMLIPE F9 ERE

~10

*t e~~u



FREQUENCY RESPONSE
PROBLEM IDENTIFICATION - EX1 W'-PLANE T=.1

GAIN--.6 189414215

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S

-2439.71742
101.985871
I

NUMERATOR ROOTS ARE
REAL PART IMAGINARY PART

-121.985871 8
28

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S

8
9. 24234314
1

DENOMINATOR ROOTS ARE
REAL PART IMAGINARY PART

-9.24234314 a

P

Figure 10 w'-Plane Frequency Response Example, T=.1

106

.,w* .%4 .



Figure 10 (Cont.)PROBLEM IDENTIFICATION - EXI W'-PLANE T=. I

"'IM RE . REAL PART ItW6IA Y PAr tW?4ITUDE PlKS() PI",E(DEG)

.167226722 -. 74901617 -46.6216872 46.6277179 -1.5878 1 -99.7215483

.12324674 -. 749869949 -40.5467916 40.5537253 -1.58929821 -91.9595392

.141747416 -. 749828698 -35.262823 35.2797736 -1.59265717 -91.218189
-16975684 -. 749772759 -38.,66494 3.6758137 -1.595249M3 -91.4665381
.18381743 -.74969929 -26.6887 26.6792163 -1.59890659 -91.6162882
.215443469 -. 74962979 -23.19"9122 23.2030238 -1.68318826 -91.8513792

.247717636 -. 749475252 -20. 1655I7 29.1794298 -1.66794548 -92.1285223

.284863588 -.749366472 -17.5334525 17.5494563 -1.61359621 -92.4471289

.327454917 -.747883476 -15.2434188 15.2618932 -1.61?9834 -92.8133714

.3764935N2 -. 748788896 -13.2567991 13.271848 -1.62724569 -93.2343435

.43287613 -. 748399944 -11.5164835 11.5467753 -1.63569023 -93.7181861

.497792359 -. 747886175 -16.8669112 16.8348196 -1.64539465 -94.274203

.572236769 -.747288246 -8.6925516 8.72466736 -1.65654519 -94.9130817

.657933228 -. 746313996 -7.54777687 7.58458359 -1.66935467 -95.647111

.756463332 -.745135214 -6.55626855 6.59251428 -1.6849659 -96.489928

.869749088 -.743582787 -5.6059274 5.729M539 -1.78095514 -97.457.85

16HIOO96 -. 741546723 -4.92181645 4.97736475 -1.7233569 -98.5688692

1.149757 -. 738858839 -4.25918654 4.32279798 -1.7425117 -99.8414361

1.32194116 -. 735343947 -3.6798489 3.75268159 -1.7688284 -191.386682
" 1.51991169 -.730749863 -3.17268863 3.25567824 -1.79717991 -192.978899

1.74752841 -.724766284 -2.72772751 2.82237198 -1.83049917 -194.87914

2.6923362 -.717999119 -2.33675582 2.44428514 -1.86851612 -107.858126

2.31012972 -.707812534 -1.9923981 2.11412199 -1.91179065 -109.53754

2.6568781 -.494229885 -1.6884269 1.82555618 -1.9668 18 -112.351287
3.65385554 -.478641196 -1.41949479 1.57311962 -2.61641584 -115.532159

3.51119177 -.657796528 -1.1813151 1.3521197 -2.87887135 -119.116597
4.9371173 -.632968475 -.97377373 1.15851463 -2.14879819 -123.111955
4.4158888 -.6@2754245 -. 784921224 .988939817 -2.22622929 -127.553973
5.336699V -.567262992 -. 62933237 .840554272 -2.31148516 -132.438391

6.13590734 -. 526356326 -.479607285 .71191473 -2.46429639 -137.756885
7.95480239 -.486295 -. 356146355 .598388931 -2.56419884 -143.474919
9.111364 -. 43191635 -. 253873 .501059694 -2.61966982 -149.5426

9.32663358 -.38117579 -,17J619167 .417619364 -2.72972574 -155.886158
16.7226724 -.336U1899 -. 16476951 .346767674 -2.8346462 -162.414377
12.32M676 -. 281976491 -. 0546999148 .287233946 -2.949902 -169.621752

14.1747418 -.23727502 -.0192671564 .237739363 -3.6646771 -175.593126

16.2975686 -. 196846611 6.0255476E-3 .1969609 3.1665424 177.991788

18.7381745 16199M288 .9231913619 .1634569 2.99939665 171.852796
21.5443472 -. 13259482 .6327930441 .136U519 2.8999561 166.18602
24.7707639 -. 11827854 .83759%315 .114616216 2.86749096 160.85744
28.4803591 -.60594678 .639773822 .6968299546 2.72618143 156.198746

32.7454921 -.8729931383 .138421M4 .I23995323 2.65644429 152.2031
: 37.64935W7 -.06493815 .036459583 .67863452 2.59919126 148.922743

43.2876135 -. 518148715 .0337766111 .9616164784 2.55495334 146.38895
49.7792365 -. 8433112756 .0307795931 .0531299586 2.5238862 144.688679
57.2236776 -.6375272975 .6276968923 .6466412816 2.505784 143.57936
65.7933236 -.0330884779 .0247128768 .8412985915 2.5609615 143,245069

75.6463342 -.0296938247 .021998753 .6369 14456 2.51593127 143.579337

86.9749119 -.0271044597 .6193382736 .0332913884 2.52297784 144.564467

I.6I6062 -. 12513329 .6169946678 .0383397665 2.5478319 145.93423

Figure 10
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Figure 10 (Cont.)

PROBLEM IDENTIFICATION - EXI W1-PLANE T-.1
MX BODE PLOT (AMPLITUDE) X*

I I I 13I I " I I I I1 I I i I ! I I3

I A

ABSCI SSA ->COMMON LOG OF FREQUENCY
ORDINATE -)COMMON LOG OF AMPLITUDE
MINIMUMI FREQUENCY SHOWNI ON ABSCISSA -. 1 RADIANS/SEC
MA~XIMUM1 FREQUENCY SHOWN#' ON ABSCISSA - 10e RADIANS/SEC
AMPLITUDE LIMITS OF BODE PLOT ARE +-40 DECIBELS

. C,

* .* Figure 10
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Figure 10 (Cont.)

PROBLEM IDENTIFICATION - EXI W'-PLANE T-.1
*X BODE PLOT (PHASE) MM

i I I I 1I I!I I I I 1 I III

ABSCI SSA ->COMMION LOG OF FREQUENCY
ORDINATE ->PHASE (DEGREES)

TIC MARKS SHOW MULTIPLES OF 9 DEGREES
MINIMUMI FREQUENCY SHOW~t ON ABSCISSA - .1 RADIANS/SEC
MAXIMUMI FREQUENCY SHOW~t ON ABSCI SSA - 186 RADIANS/SEC
MAXIMUMI PHASE ON ORDINATE SCALE -188 DEGREES
MINIMUMI PHASE ON ORDINATE SCALE - -19 DEGREES

Figure 10
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-7 -l_ -.. . - - . . . . * ~ * ~ . - - -. - -- -. ~- - - . - ~ - -.

ROOT LOCUS
PROBLEM IDENTIFICATION - EX1 S-PLANE

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S OR N'

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S OR W"

I

OPEN-LOOP POLES
REAL PART IMAGINARY PART

-18

MIN GAIN MAX GAIN
8 3e

Figure 11 s-Plane Root Locus Example
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Figure 11 (Cant.)

I GAIN-B ROOTS ARE
REAL PART IMAG. PART
-10 0

2 GAIN -. 492857143 ROOTS ARE
REAL PART IMAG. PART
-. 8495310467 0
-9.95846896 0

3 GAIN =1.85964286 RAPRTROOTS ARE IA.PR

-.107111575 6
-9.89288843 0

4 GAIN =1.71144643 ROOTS ARE
REAL PART IMAG. PART
-.174178456 8
-9.82582155 0

5 GAIN -2.46102054 ROOTS ARE
REAL PART IMAG. PART
-.252476491 0
-9.74752351 0

6 GAIN =3.32303876 RAPRTROOTS ARE IA.PR

-.344146776 a
-9.65585323 0

7 GAIN =4.31434252 ROOTS ARE
REAL PART IMAG. PART
-.451851202 a
-9.54814888

8 GAIN =5.45435104 ROOTS ARE
REAL PART IMAG. PART
-.578953861 0
-9.42104614 0

9 GAIN =6.76536884 ROOTS ARE
REAL PART IMAG. PART
.7297963558

-9.27820365 0
10 GAIN =8.27382211 ROOTS ARE

REAL PART IMAG. PART
.9101371788

-9.089862838
11 GAIN -10.8868326 ROOTS ARE

REAL PART IMAG. PART
-1.12789883 a
-8.87210117 8

12 GAIN =12.0887146 ROOTS ARE
REAL PART IMAG. PART
-1.39454782 a
-8.68545218 0

13 GAIN -14.2936789 ROOTS ARE
REAL PART IMAG. PART
-1.727948498
-8.272051510

2 Figure 11



Figure 11 (Cont.)
14 GAIN - 16.9305879 ROOTS. ARE

REAL PART IMAG. PART
-2.15932893 8
-7.84867187 8

15 GAIN - 19.9638332 ROOTS ARE
REAL PART IMAG. PART
-2.75568122 8
-7.24431878 8

16 GAIN - 23.4583453 ROOTS ARE
REAL PART IMAG. PART
-3.75514874 8
-6.24485127 8

17 GAIN = 27.4687543 ROOTS ARE
REAL PART IMAG. PART
-5 -1.56867915
-5 1.56867915

18 GAIN - 32.8727246 ROOTS ARE
REAL PART IMAG. PART
-5 -2.65945945
-5 2.65945945

19 GAIN - 37.3764984 ROOTS ARE
REAL PART IMAG. PART
-5 -3.51882365
-5 3.51882365

28 GAIN = 43.4758212 ROOTS ARE
REAL PART IMAG. PART
-5 -4.29835898
-5 4.29835898

21 GAIN - 58.4908515 ROOTS ARE
REAL PART IMAG. PART
-5 -5.84876732
-5 5.84876732

22 GAIN = 58.5564163 ROOTS ARE
REAL PART IMAG. PART
-5 -5.79279883
-5 5.79279883

23 GAIN - 67.8327359 ROOTS ARE
REAL PART IMAG. PART
-5 -6.54467233
-5 6.54467233

24 GAIN - 78.5885834 ROOTS ARE
REAL PART IMAG. PART
-5 -7.31448383
-5 7.31448383

25 GAIN - 98.7684361 ROOTS ARE
REAL PART IMAG. PART

-5 -8.10977411
-5 8.18977411

26 GAIN - 184.876559 ROOTS ARE
REAL PART IMAG. PART

-5 -8.93736867
-5 8.93736867

Figure 11
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Figure 11 (Cont.)
27 GAIN - 121.1809 ROOTS ARE

REAL PART IMAG. PART
-5 -9.88318663
-5 9.88318663

28 GAIN - 139.758892 ROOTS ARE
REAL PART IAG. PART
-5 -18.7125577
-5 18.7125577

29 GAIN a 161.215582 ROOTS ARE
REAL PART IMAG. PART
-5 -11.6711431
-5 11.6711431

38 GAIN = 185.899777 ROOTS ARE
REAL PART IMAG. PART
-5 -12.6842728
-5 12.6842728

31 GAIN - 214.267251 ROOTS ARE
REAL PART IMAG. PART
-5 -13.7574435
-5 13.7574435

32 GAIN - 246.989195 ROOTS ARE
REAL PART IMAG. PART

-5 -14.8963148
-5 14.8963148

33 GAIN = 284.428882 ROOTS ARE
REAL PART IMAG. PART
-5 -16. 1867713
-5 16.1867713

Figure 11
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Figure 11 (Cont.)

PROBLEM IDENTIFICATION - EXI S-PLANE
IN ROOT LOCUS PLOT X
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ROOT LOCUS
PROBLEM IDENTIFICATION - EXI I'-PLANE T=.001

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S OR N

-2. 485638E 89
120819

7. 1

OPEN-LOOP ZEROS
REAL PART IMAGINARY PART

" -1262819 8
2900 0

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S OR N'

.4' 9.9999
1

OPEN-LOOP POLES

REAL PART IMAGINARY PART

8 8
-9.9999 8

MIN GAIN MAX GAIN
6 -1.2546E-07

Figure 12 wi-Plane Root Locus Example, T=.O01
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Figure 12 (Cont.)
1 GAIN =8 ROOTS ARE

REAL PART IWAG. PART
-9.9999 8

2 GAIN = -2.86112857E-18 ROOTS ARE
REAL PART IMAG. PART
-.0498333682 8
-9.94981915 8

3 GAIN = -4.43142643E-18 ROOTS ARE
REAL PART IMAG. PART
-. 187772379 8
-9.89159549 8

4 GAIN = -7.15726896E-18 ROOTS ARE
REAL PART IMAG. PART
-. 175266637 8
-9.82377392 8

5 GAIN = -I.82919879E-89 ROOTS ARE
REAL PART IMAG. PART
-. 254877448 8
-9.74458669 8

6 GAIN = -1.38969146E-89 ROOTS ARE
REAL PART IMAG. PART

-. 346367788 8
-9.65186347 8

7 GAIN = -1.88425884E-89 ROOTS ARE
REAL PART IMAG. PART
-.454829223 8
-9.54298422 a

8 GAIN = -2.2818896E-89 ROOTS ARE
REAL PART IMAG. PART
-. 58286724 8
-9.41429371 8

9 GAIN = -2.8292739E-89 ROOTS ARE
REAL PART IMAG. PART

-. 734883239 8

-9.26161935 0
18 GAIN = -3.45977784E-89 ROOTS ARE

REAL PART IMAG. PART

-.916725984 8
-9.87981949 8

11 GAIN = -4.18485737E-89 ROOTS ARE
REAL PART IMAG. PART
-1.13646232 8
-8.85841248 8

12 GAIN - -5.81869884E-89 ROOTS ARE
REAL PART IMAG. PART
-1.48588821 8
-8.58886531 8

13 GAIN = -5.97761652E-89 ROOTS ARE
REAL PART IMAG. PART
-1.74311805 8

Figure-t24961198 
8
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Figure 12 (Cont.)
14 GAIN = -7.08037185E-09 ROOTS ARE

REAL PART IMAG. PART
-2. 18678488 8
-7.81869376 8

15 GAIN = -8.34854849E-89 ROOTS ARE
REAL PART IMAG. PART
-2.7898739 8
-7.2888811 8

16 GAIN - -9.88693442E-89 ROOTS ARE
PEAL PART IMAG. PART
•3.83271797 8
-6.15548578 8

17 GAIN = -1.14848874E-88 ROOTS ARE
REAL PART IMAG. PART
-4.9938549 -1.64193793
-4.9938549 1.64193793

18 GAIN = -1.34128134E-88 ROOTS ARE
REAL PART IMAG. PART
-4.99189689 -2.71859762
-4.99189689 2.71859762

19 GAIN = -1.56388483E-88 ROOTS ARE
REAL PART IMAG. PART
-4.99856517 -3.56328396
-4.99856517 3.56328396

28 GAIN = -1.81815884E-88 ROOTS ARE
REAL PART IMAG. PART
-4.98983369 -4.34141261
-4.98983369 4.34141261

21 GAIN = -2.11149395E-88 ROOTS ARE
REAL PART IMAG. PART
-4.9872725 -5.8913667
-4.9872725 5.8913667

22 GAIN = -2.44882933E-88 ROOTS ARE
REAL PART IMAG. PART
-4.98524712 -5.83586167
-4.98524712 5.83586167

23 GAIN = -2.83676581E-88 ROOTS ARE
REAL PART IMAG. PART

-4.98291794 -6.58884116
-4.98291794 6.58884116

24 GAIN = -3.28289185E-88 ROOTS ARE
REAL PART IMAG. PART

-4.98023937 -7.36814218
-4.98823937 7.36814218

25 GAIN = -3.79593599E-88 ROOTS ARE
REAL PART IMAG. PART
-4.97715983 -8. 15747327
-4.97715983 8. 15747327

26 GAIN = -4.38593767E-88 ROOTS ARE
REAL PART IMAG. PART
-4.97361663 -8.9873759
-4.97361663 8.9873759

Figure 12
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Figure 12 (Cont.)
27 GAIN = -5.86443961E-88 ROOTS ARE

REAL PART IMAG. PART
-4.96954288 -9.85574623
-4.96954288 9.85574623

28 GAIN - -5.84471684E-08 ROOTS ARE
REAL PART IMAG. PART
-4.96485886 -18.7681438
-4.96485886 18.7681438

29 GAIN = -6.74283565E-88 ROOTS ARE
REAL PART IMAG. PART
-4. 95947852 -11 .7299887
-4.95947852 11.7299887

38 GAIN = -7.77395228E-88 ROOTS ARE
REAL PART IMAG. PART

-4.95327484 -12.746695
-4.95327484 12. 746695

31 GAIN = -8.96865641E-88 ROOTS ARE
REAL PART IMAG. PART
-4.94614981 -13.8237686
-4.94614981 13.8237686

32 GAIN = -1.83253662E-87 ROOTS ARE
REAL PART IMAG. PART
-4.93795683 -14.9668817
-4.93795683 14.9668817

33 GAIN = -1.18947824E-87 ROOTS ARE
REAL PART IMAG. PART
-4.92853319 -16. 1819344
-4.92853319 16. 1819344

Figure 12
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Figure 12 (Cont.)

PROBLEM IDENTIFICATION -EXI W'-PLANE T-.001
XM ROOT LOCUS PLOT *1
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ROOT LOCUS
PROBLEM IDENTIFICATION - EXI W'-PLANE T=.81

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S OR W'

-2488840.84
11882.0042
1

OPEN-LOOP ZEROS
REAL PART IMAGINARY PART

-12082.8842 8

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S OR W"

8
9.99167498
I

OPEN-LOOP POLES
REAL PART IMAGINARY PART

-9.99167498 8

MIN GAIN MAX GAIN
- -1.25E-04

Figure 13 w'-Plane Root Locus Example, T=.O
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Figure 13 (Cont.)
I 6AN8 ROOTS ARE

REAL PART IMAG. F."T
-9.99167498

2 GAIN = -2.05357143E-07 ROOTS ARF
REAL PART IMAG. PART

-. 8495932003 0
-9.93966822 0

3 GAIN = -4.41517857E-07 ROOTS ARE

REAL PART IMAG. PART

-. 107278851 
-9.87919055 0

4 GAIN = -7. 13102678E-07 ROOTS ARE
REAL PART IMAG. PART

-. 174518775 0
-9.88875529 0

5 GAIN = -1.02542522E-86 ROOTS ARE
REAL PART IMAG. PART

- .253064237 0
-9.72651892 0

6 GAIN = -1.38459615E-06 ROOTS ARE I PiREAL PART IMAG. PART P

-. 345120662 0

-9.63e22713 8

7 GAIN = -1.79764271E-06 ROOTS ARE
REAL PART IMAG. PART
-. 453403097 8
-9.51707403 8

8 GAIN = -2.27264626E-86 ROOTS ARE
REAL PART IMAG. PART
-. 581368364 0

* -9.38350749 8

9 GAIN = -2.81898035E-06 ROOTS ARESREAL PART IMAG. PART=

-. 73358241 0

-9.22493198 8

18 GAIN = -3.44709254E-06 ROOTS ARE
REAL PART IMAG. PART

-. 915796521 8
-9.03523817 8

11 GAIN = -4.16951357E-86 ROOTS ARE
REAL PART IMAG. PART

-1.1365675 8
-8.80594833 8

12 GAIN = -5.0829774E-06 ROOTS ARE M P
SREAL PART IM-AG. PART

-1.40799799 0
-8.52471313 0

13 GAIN = -5.95569955E-86 ROOTS ARE
REAL PART IMAG. PART

-1.74939626 8
-8. 17204862 0

Figure 13
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Figure 13 (Cont.)
14 GAIN = -7.85441162E-86 ROOTS ARE

REAL PART IMAG. PART
-2.1954399 8
-7.71384879 8

15 GAIN = -8.31793851E-06 ROOTS ARE
REAL PART IMAG. PART
-2.82447443 8
-7.86911459 8

16 GAIN = -9.77897722E-86 ROOTS ARE
REAL PART IMAG. PART
-3.97383464 8
-5.98341974 0

17 GAIN = -1.1441981E-85 ROOTS ARE
REAL PART IMAG. PART
-4.92837473 -1.78235168
-4.92837473 1.78235168

18 GAIN = -1.33636352E-85 ROOTS ARE
REAL PART IMAG. PART
-4.91784436 -2.8189846
-4.91784436 2.8189846

19 GAIN = -1.55735377E-85 ROOTS ARE
REAL PART IMAG. PART
-4.98481439 -3.65156925
-4.98481439 3.65156925

28 GAIN = -1.81149255E-85 ROOTS ARE
REAL PART IMAG. PART
-4.88982985 -4.42507143
-4.88902985 4.42587143

21 GAIN = -2.18375214E-85 ROOTS ARE
REAL PART IMAG. PART
-4.87179752 -5. 1735832
-4.87179752 5. 1735832

22 GAIN = -2.43985868E-85 ROOTS ARE
REAL PART IMAG. PART
-4.85198823 -5.91826942
-4.85198823 5.91826942

23 GAIN = -2.82636399E-85 ROOTS ARE
REAL PART IMAG. PART
-4.82919818 -6.67269846
-4.82919818 6.67269846

24 GAIN = -3.2788543E-85 ROOTS ARE
REAL PART IMAG. PART
-4.88298141 -7.4463113
-4.88298141 7.4463113

25 GAIN = -3.78281816E-85 ROOTS ARE
REAL PART IMAG. PART
-4.77284183 -8.24663677
-4.77284183 9.24663677

26 GAIN = -4.3698566E-85 ROOTS ARE
REAL PART IMAG. PART
-4.73817921 -9.88818553

Figure-13
7 3 8 17 9 2 1  9.88818553
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Figure 13 (Cont.)
27 GAIN = -5.04587081E-85 ROOTS ARE

REAL PART IMAG. PART

-4.69831762 -9.95253982
-4.69831762 9.95253982

28 GAIN = -5.82328715E-85 ROOTS ARE
REAL PART IMAG. PART
-4.65247613 -10.8694452
-4.65247613 18.8694452

29 GAIN = -6.71731593E-85 ROOTS ARE
REAL PART IMAG. PART
-4.59975752 -11.8361975
-4.59975752 11.8361975

30 GAIN = -7.74544903E-05 ROOTS ARE
REAL PART IMAG. PART
-4.53912996 -12.8581696
-4.53912996 12.8581696

31 GAIN = -8.9278021E-05 ROOTS ARE
REAL PART IMAG. PART
-4.46940673 -13.940824
-4.46948673 13.940824

32 GAIN = -1.82875881E-04 ROOTS ARE
REAL PART IMAG. PART
-4.38922296 -15.0897833
-4.38922296 15.6897833

33 GAIN = -1.18511781E-04 ROOTS ARE
REAL PART IMAG. PART
-4.29788894 -16.31083865
-4.29700894 16.3108865

Figure 13
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Figure 13 (Cont.)

PROBLU1 IDENTIFICATION - EXI W'-PLANE T-.81
IX ROOT LOCUS PLOT XX
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ROOT LOCUS
PROBLEM IDENTIFICATION - EXI W"-PLANE T=.1

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S OR N1

-2439.71742
101.985871
1

OPEN-LOOP ZEROS
REAL PART IMAGINARY PART

-121.985871 a
28 8

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S OR N'

0
9.24234314
I

OPEN-LOOP POLES
REAL PART IMAGINARY PART

-9.24234314 8

HIN GAIN MAX GAIN
8 -. 113648529

Figure 14 w'-Plane Root Locus Example, T=.1
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Figure 14 (Cont.)
I GAIN - 8 ROOTS ARE

REAL PART IMAG. P'ART

-9.24234314 8

2 GAIN = -1.86788298E-84 ROOTS ARE
REAL PART IMAG. PART

.8496547378 0
-9.17536918 0

3 GAIN = -4.8142284E-84 ROOTS ARE
REAL PART IMAG. PART

-. 187695744 '
-9.89748388 3

4 GAIN = -6.,48344563E-04 ROOTS ARE
REAL PART IMAG. PART

-. 175741467 0
-9.88643291 0

5 GAIN = -9.32384545E-84 ROOTS ARE
REAL PART IMAG. PART

-. 255887277 0
-8.89998997 0

6 GAIN = -1.25885852E-83 ROOTS ARE
REAL PART IMAG. PART

.358442874 0
-8.77588293 8

7 GAIN = -1.6343956E-83 ROOTS ARE
REAL PART IMAG. PART

-. 462932827 8
-8.62758256 a

8 GAIN = -2.86626324E-83 ROOTS ARE
REAL PART IMAG. PART

-597624754 0
-8.45268987 8

9 GAIN = -2.56291182E-83 ROOTS ARE
REAL PART IMAG. PART

-. 760451859 8
-8.24358792 1

18 GAIN = -3.13405597E-83 ROOTS ARE
REAL PART IMAG. PART
-. 959874e79 8

-7.99889184 8

11 GAIN = -3.79887267E-83 ROOTS ARE
REAL PART IMAG. PART

-1.28872442 0
-7.68878196 0

12 GAIN = -4.54621186E-83 ROOTS ARE
REAL PART IMAG. PART

-1.52831341 8
-7.29847243 a

13 GAIN = -5.41485194E-83 ROOTS ARE
REAL PART IMAG. PART
-1.95977876 8
-6.77764581 8

Figure 14
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Figure 14 (Cont.)
14 GAIN = -6.41378883E-83 ROOTS ARE

REAL PART IMAG. PART
-2.61828387 8
-6.83338216 8

15 GAIN = -7.56256453E-83 ROOTS ARE
REAL PART IMAG. PART
-4.26788979 -. 613935262
-4.26788979 .613935262

16 GAIN = -8.8836575E-83 ROOTS ARE
REAL PART IMAG. PART
-4.28552827 -2.84485829
-4.28552827 2.84485829

17 GAIN = -. 8184829144 ROOTS ARE
REAL PART IMAG. PART
-4. 13369894 -2.92566367
-4. 13369894 2.92566367

18 GAIN = -. 8121588599 ROOTS ARE
REAL PART IMAG. PART
-4.85882288 -3.68756611
-4.85882288 3.68756611

19 GAIN = -. 8141592772 ROOTS ARE
REAL PART IrIAG. PART
-:3.95515854 -4.48426744
-3.95515854 4.48426744

28 GAIN = -. 816469877 ROOTS ARE
REAL PART IMAG. PART
-3.84464582 -5.18621413
-3.84464582 5.18621413

21 GAIN = -. 8191278669 ROOTS ARE
REAL PART IMAG. PART
-3.71692886 -5.8182587
-3.71692886 5.8182587

22 GAIN = -. 8221828352 ROOTS ARE
REAL PART IMAG. PART
-3. 569 178 18 -6. 52752509
-3. 569 17818 6. 52752509

23 GAIN = -.8256969688 ROOTS ARE
REAL PART IMAG. PART
-3.39812932 -7.26633187
-3.39812932 7.26633187

" 24 GAIN = -. 8297382224 ROOTS ARE
REAL PART IMAG. PART

-3.1998914 -8.83358963
-3. 1998914 8.83358963

25 GAIN = -. 834385664 ROOTS ARE
REAL PART IMAG. PART
-2.96986645 -8.83587658
-2.96986645 8.83587658

26 GAIN = -.839738222 ROOTS ARE
REAL PART IMAG. PART

-2.78258524 -9.67661888
-2.78258524 9.67661888

Figure 14

127



a I -, ,_. . - .-, -. . . - -. . . . .-,.. . ., . . . + . . .

Figure 14 (Cont.)
27 GAIN - -. 8458764635 ROOTS ARE

REAL PART IMAG. PART
-2.39151885 -10.5635188
-2.39151885 10.5635188

28 GAIN = -. 8529446414 ROOTS ARE
REAL PART IMAG. PART
-2.82878282 -11.5818951
-2.82878282 11.5818951

29 GAIN = -. 8618738459 ROOTS ARE
REAL PART IMAG. PART
-1.68489341 -12.4946847
-1.68489341 12.4946847

38 GAIN = -.878428711 ROOTS ARE
REAL PART IMAG. PART
-1. 19825784 -13.549675
-1.18825784 13.549675

31 GAIN = -. 881178526 ROOTS ARE
REAL PART IMAG. PART
-. 524632981 -14.6714825
-. 524632981 14.6714825

32 GAIN = -. 8935328132 ROOTS ARE
REAL PART IMAG. PART
163647556 -15.8654581
:163647556 15.8654581

33 GAIN = -. 187749443 ROOTS ARE
REAL PART IMAG. PART
.97874845 -17.1366797
.97874845 17.1366797

Figure 14
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Figure 14 (Cont.)

PROBLEM IDENTIFICATION - EXI W'-PLANE T-.1
XX ROOT LOCUS PLOT 1*
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C. ROOT LOCUS TEMPLATES IN w'-PLANE

The s-plane consists of an abscissa representing the

real portion of the complex variable s and an ordinate

representing the imaginary part where

s= O + j(

The w'-plane approaches the s-plane as the sampling

period T approaches zero. (See [Ref. 11] for a proof.)

The w'-plane, like the s-plane, consists of an abscissa

representing the real part and an ordinate representing

the imaginary part where

w'=u' +j V'

The s and w' planes are related as shown below.

u= 2/T tanh ( T/2)

= 2/T tan( W'T/2)

GU = 2/T tanh -1 (u'T/2) where -1 < u'T/2 < 1

Wj= 2/5 tan -I ( PT/2) where -1 < .'T/2 < 1

In the s-plane, (U represents damping. Therefore a line

of constant damping in the s-plane is a vertical line

parallel to the imaginary axis and passing through the proper

value of ( on the real axis. Since the real axis in the

w'-plane represents u' which is not the damping but only

related to (U as shown above, it is not possible to easily

determine the damping of a particular root by simply ob-

serving the position of the root in the plane. This is also

true of the damped natural frequency, the natural frequency,
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and the damping ratio.. Because of this it is helpful to

have templates of constant parameters in the w'-plane to

make interpretation of the characteristics of a root

by its location easier. The following sections give some

insight into the nature of these templates in the w'-plane.

1. Constant Damping

The constant damping templates are shown in Figure 15.

There are three templates, one of each of three values of

sampling period, .001 seconds, .01 seconds, and .1 seconds.

Each template shows lines of constant damping for the values

25, 50, 75, and 100. These templates are created by using

the above relationship between (" and u' to find the constant

value of u' that corresponds to the constant value of (7 and

then plotting the constant u' value. From the templates it

is seen that for a period of .001 there is practically no

difference from the s-plane. For a period of .01 seconds,

some distortion is noticed as the values of damping approach

the reciprocal of the value of the period. This distortion

is in the form of u' becoming smaller than the value of

damping. And for a period of .1 seconds gross distortion

is seen. Figure 15 shows an extra template for a period

of .1 seconds but for values of damping of 1, 2, 3, and 4.

In this case only little distortion is present because the

values of damping are small compared to the reciprocal of

the period.
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2. Constant Damped Natural Frequency

Figure 16 shows the templates for constant damped

natural frequency for values of damped natural frequency of

25, 50, 75, and 100. The results here are similar to the

constant damping case. As the period increases, the

distortion between the value of Aj and the value of P1 in-

creases. In this case the value of P becomes greater than

the value of damped natural frequency as it distorts.

In the case where the period is .1 seconds the distortion

is so great that the template is useless and negative

values of Pl are produced by the tangent function in the

relationship.

3. Constant Natural Frequency

Templates for constant natural frequency in the

w'-plane are shown in Figure 17. In the s-plane constant

natural frequency (W. plots as a circle with its center at

the origin where

"-,),= sqrt( 0.2 + ,2 )

To plot constant natural frequency in the w'-plane, substitute

U= 2/T tanh( (0 T/2)

J' - 2/T tan( W4 T/2)

into the above equaticn and solve for i to get

V' 2/T tan [T/2 {W" [2/T tanh 1 (uT/2)}]
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. For a constant value of natural frequency and period this

equation is used to plot u' vs . In the w'-plane for a

period of .001 seconds and a value of natural frequency of 25

it plots very close to a perfect circle. As the values of

natural frequency increase they form concentric ellipses

which are elongated along the imaginary axis and contracted

along the real axis. This effect becomes more dramatic

as the period increases. An extra template for a period of

.05 seconds is added to better show the trend since the

change from .01 seconds to .1 seconds is so great.

4. Constant Damping Ratio

The damping ratio, 4 , can be defined as

where J represents the absolute value and Q is the angle
formed by the negative real axis and a line joining the

origin and the root in a root locus plot. In the s-plane a

plot of constant damping ratio is a line radially out from

the origin forming the correct angle 0 with the negative

real axis. To plot constant damping ratios in the w'-plane,

substitute the proper relations into the above equation to

get

tanh - (u'T/2)

{[tanh-1 (uT/2)]
2 + (tan- 1 (P'T/2)] 2 }
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Solving for u' gives

tanl(V T/2)
u= 2/T tanh [sqrt(1- ) j

This equation is used to plot constant damping ratio for

a given sampling period. Figure 18 shows templates for

constant damping ratio for values of damping ratio of .1,

.5, .707, and .9. From these templates it can be seen that

there is a region near the origin that can be interpreted

the same as the s-plane for a close approximation and that

the size of this region* depends on the value of the sampling

period. Beyond this region a template makes the interpreta-

tion easier.
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CONSTANT DAMPING W'-PLANE T=.891
SROOT LOCUS PLOT *9

ABSCISSA ->REAL (U) AXIS
ORDINATE ->IMAGINARY (NU) AXIS
TIC MARKS SHOW INTERVALS OF 5
THE PLOT FRAME LIMITS ARE:

ABSCISSA, -163 TO 37
ORDINATE, -1ee TO 100

Figure 15 Constant Damping Templates
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Figure 15 (Cont.)

- CONSTANT DAMPING W'-PLANE T=.81
X* ROOT LOCUS PLOT *X

III I I I I I I I I I Ii I I II I I I (I I I I I I I II IIIIIII

ABSCISSA ->REAL (U) AXIS
ORDINATE ->IMAGINARY (NU) AXIS
TIC MARKS SHOW INTERIVALS OF 5
THE PLOT FRAME LIMITS ARE:

ABSCISSA, -168 TO 46
ORDINATE, -188 TO 106

Figure 15
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Figure 15 (Cont.)

CONSTANT DAMPING W1-PLANE T-. 1
-X ROOT LOCUS PLOT ,

f1i I I II I I I I I I I I I IIIIIIIIIIIIIII

ABSCISSA -> REAL (U) AXIS
ORDINATE -> IMAGINARY (NU) AXIS
TIC MARKS SHOW INTERVALS OF 5
THE PLOT FRAME LIMITS ARE:

ABSCISSA, -118 TO 82
ORDINATE, -106 TO 18

Figure 15

137

,.. - , .



Figure 15

CONSTANT DAMPING W' -PLANE T=.I
XU ROOT LOCUS PLOT Ut

I i (

ABSCISSA -> REAL (U) AXIS
ORDINATE -> IMAGINARY (NU) AXIS
TIC MARKS SHOW INTERVALS OF I
THE PLOT FRAME LIMITS ARE:

ABSCISSA, -7 TO 3
ORDINATE, -5 TO 5

Figure 15
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CONSTANT DAMPED NATURAL FREQ W-PLANE T=.001
~ROOT LOCUS PLOT A*

ABSCISSA ->REAL (U) AXIS
ORDINATE >IMGINARY (NU) AXIS
TIC MARKS SHOW INTERVALS OF 5
THE PLOT FRAME LIMITS ARE:

ABSCISSA, -180 TO 108
ORDINATE, -37 TO 163

Figure 16 Constant Damped Natural Frequency Templates
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Figure 16 (Cont.)

CONSTANT DAMPED NATURAL FREG W'-PLANE T-. 01
X* ROOT LOCUS PLOT t

= 1 11 1111 f11 111 11 11 I I I I II II I II Ji l Il J 1 II

........................ ..........................................

I ..................... ................................... 

.....................................................

ABSCISSA -)REAL (U) AXIS
ORDINATE ->IMAGINARY (NU) AXIS
TIC MARKS SHOW INTERVALS OF 5
THE PLOT FRAME LIMITS ARE:

ABSCISSA, -100 TO iee
ORDINATE, -32 TO 168

Figure 16
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Figure 16 (Cont.)

CONSTANT DAMPED NATURAL FREQ W'-PLA.E T- .1
X* ROOT LOCUS PLOT tt

1IIIIII1 ii51II 11II11 Ilil~llll~lll l Iill I

....................... .................................

......... ........................................

................. ................ ..............a. ...

ABSCISSA ->REAL (U) AXIS
ORDINATE IMAGINARY (NU) AXIS
TIC MARKS SHOW INTERVALS OF 5
THE PLOT FRAME LIMITS AREs

ABSCISSA, -100 TO 100
ORDINATE, -105 TO 95

Figure 16
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CONSTJNT NATURAL FREQUENCY W'-PLANE T-,.001
** ROOT LOCUS PLOT *

IIIIIIIII II IIll I ts11 ll I 11 I III

TIC MAK SHWINEVLSO.

4 142

* Si •

* .5

• ee m

* S •
oI•
I -e

* •Ieo a

* Sm

ABCISA- REL()AI

TI MRK SHO INEVLSO

ORDNAT, -18 TO18

-_4

Fiue1 Cntn Naua rqec Tepae

i -•S
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4J-V,°j

Figure 17 (Cont.)

4 *CONSTANT NATURAL FREQUENCY W'-PLANE T-.01

tl ROOT LOCUS PLOT NX

III,, III It a itII I II t -III vi I II II sI1

O I

' ' .

S , -

43

• I

* I"
! Qe

., IiIIS ZSA -10TO5

$.4

4.]
" S%. . " ' ' ' " " " "- " " " " " " ' " . " - . . - . . " - . ' , • . . . 2 .J_



7.. 7... 7.7-7 -. tqC

Figure 17 (Cont.)

CONSTANT NATURAL FREQUENCY W -PLANE T- .05
*X ROOT LOCUS PLOT X3E

IIIl 1 1 1 11I1IIs51 i IFTT T uI tI I 1 1 ul

p1

L: IIL I11

ABSCISA RAL (U AXI

ORDIATE MAGNARY(NU)AXI

TIC MARKS SHOWITRASO

J. . . . . . .



. ... 7- -7 . . . . . . . . .. .

Figure 17 (Cont.)

CONSTANT NATURAL FREQUENCY W' -PLANE T-.*1
XXROOT LOCUS PLOT X

111 -IL f i l

ABSCISA RAL (U AXI

ORDINATE IMAG~IR(U)AI

ABSCISS , -12 REA 8U5AI

ORDINATE, -165 TO 100

Figure 17

145



CONSTANT DAMPING RATIO W'-PLANE T=.e
XX ROOT LOCUS PLOT f

I I I I f I II I I

ORIAE- IMA IAY U AIS

TI MAK SHa INEVLSO I

TH PO FAE I I ARE

ABCSA -30 TO 10

ORIAE 0 O4I

Fiue1 CntnamigRto-epae
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Figure 18 (Cont.)

CONSTAN'T DAMPING RATIO W'-PLANE T=.81
*X ROOT LOCUS PLOT

ODINATE IMAG I ( XIS

TH PLO FRM LIIT ARE

ABCIS, -3!T 0

I I a

el II I

S. . ; . S

S. ., : -

... •..

I f ii333li ii ti iii m*~ii,

ORDINATE, 8 TO 488

Figure 18
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Figure 18 (Cont.)

CONSTANT DAMPING RATIO W'-PLANE T-.1
X* ROOT LOCUS PLOT X

. .L .

O - I A IS

ORINTE 0 TO4

I I a g

•% a

• % %•

*. *-*.

ABCSA•RA (U AXIS

Fiu e  18

ORDINATE -) IMAGINARY (NU) AXIS
TIC MARKS SHOW4 INTERVALS OF I

C, THE PLOT FRAM E LIMITS ARE:
ABSCISSA, -38 TO 18
ORDINATE, S TO 48

Figure 18
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D. COMPENSATION EXAMPLE

To further demonstrate the use of the RTLOC and FRESP

programs for analysis and design in the w'-plane, an example

from [Ref. 6] is duplicated here.

An angular position servo is described below.

Md (friction)

+ +

~ K ~ KD ZOH K T+

K _

p

where

K K De- s T T -e s

p 3

where

ZOH =
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-, .. *., 4- 4, -- -.-. . - , . - .. . . . 2 .". -. .,- . -. - -. . . . -. -. -.. . - ,

KIKT I-esT
G (s) = T 3

1. S

Converting to the z domain gives

GI(Z) = K2T2 (z+)

(z-1)

where

KIK T
K = J= 59.8

2J

Converting this to the w domain give..

K2T2  1-w
G 1(w) =

2 w

where

w = w'T/2

The open loop transfer function is

G(w) = KpK 1 G1 (w)

where

K1  3.83
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from the calculation of D C gain. This gives

1-w
G(w) = 217.58 T

2

w2

For

TF = 0 .0 1

1-w
G(w) = 0.0218 2 (5)

w

Therefore for the uncompensated system equation 5 above is

entered into the FRESP program producing the output shown

in Figure 19. From these Bode plots it is seen that the

uncompensated system is unstable.

From analog design techniques the final compensation

network [Ref. 7] is

(w/0.1 + 1)
K1D(w) = 3.83 (w/2.15 + 1)2

and the open loop transfer function becomes

w+0.1 w-1
G(w) K 2 2

(w+2.15) w

For

K = -1.017
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this transfer function IM entered into the FRESP program.

The resulting Bode plots in Figure 20 show that the compen-

sated system is stable with a gain margin of 10.5 dB and

phase margin of 41 degrees.

Figure 21 shows the output from the RTLOC program for the

compensated system. This figure includes the normal root

locus in addition to an expanded portion of the root locus

to obtain more detail. These plots are of w and not w' in

this case. Values of w' can be found by the simple relation

w= 2w/T

where

T = .01 seconds

for this problem.

On the expanded root locus plot in Figure 21, a root

associated with a certain gain may be identified and

templates similar to the ones discussed in section V.C. may

be used to easily obtain the characteristics associated with

the root.
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FREQUENCY RESPONSE
PROBLEM IDENTIFICATION - KATZ EXAMPLE

GAIN=-.822

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S

-1
1

NUMERATOR ROOTS ARE
REAL PART IMAGINARY PART

1 8

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S

a0
I

DENOMINATOR ROOTS ARE
REAL PART IMAGINARY PART

a 8
8 8

'p

Figure 19 Uncompensated System Frequency Response
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Figure 19 (Cont. ROBLEM IDENTIFICATION KATZ EXAMPLE

RADIN FREG. REAL PART IAGINRY PART MAGNITUDE PHSE(RA) PHASE.-DEG)

.184761 5 -2.86455886 .219608666 2.81552865 3,A3721188 174.8194S4
.1149757 -1.46421932 .19134478 1.6751832 3.62711966 173.441242
.12185688 -1.38166411 .174346238 1.39262867 3.01607043 172.388168
.138489637 -1.14788182 .158857798 1.15892958 3.89397938 172.115482
.151991189 -.952327477 .14474539 .963264672 2.99875683 171.57759
.66816154 -. 79663961 .131886535 .801563527 2.97639452 178.529748
.183873829 -.64@2388 .128178698 .67311733 2.968524 169.625591
.2806923381 -.544956794 .169494518 .555847962 2.94338951 168.639273
.226513875 -.452432704 .9997673267 .463382138 2.92455396 167.564687
.242112829 -. 3r617579 .1899842724 .386461862 2.4414539 166.395333
.2656878 -.311844312 .0828285873 .32265861 2.38197822 163. 12248
.291505388 -.258898627 .9754783239 .269674375 2.35794731 163.748377
.319926716 -.214942188 .8687657482 .225674261 2.83195624 162.259198
.351119176 -.17844878 .0626567886 .189129163 2.88392119 169.65298
.385352862 -.148151312 .6570985323 .158778716 2.77377659 158.925748
.422924291 -.122997822 .0520187667 .133545559 2.74148151 157.875376
.46415887 -.182114953 .8473975628 .112578828 2. l792683 155.181268
.589413886 -.8847776276 .8431868939 .8951438593 2.67844244 153.095136
.559881823 -.8793838757 .9393582893 .6886378586 2.63188424 1598.791329
.61359733 -.9584339381 .835854518 .8685579613 2.5912399 148.467163
.673415072 -. 9485128753 .9326693615 .8584874545 2.54893266 146.843136
.739872211 -.42762413 .8297670567 .8589824612 2.5512214 143.532977
.81113884 -.8334388431 .027122628 .8438556773 2.46818142 148.953479
.89215095 -.927768598 .8247131284 .8371672377 2.41421 133.324893
.977989969 -.823847546 .8225176822 .8322216663 2.3678227 135.U6296
1.87226724 -.0191344776 .8295172734 .8280559662 2.32133516 133.092755
1.17681197 -. 8 158857794 .8186945753 .8245325322 2.27514727 13.356383
1.29154968 -.01318U531 .8178338808 .82154277 2.22964625 127.74934d
1.41747418 -.8169494515 .9155205649 .8189941681 2.18519888 125.292259
1.55567617 -9.09042782E-03 .8141417667 .0168114621 2.14289359 122.733252
1.79735267 -7.54793221E-63 .0128854456 .8149329362 2.1963635 128.35764
1.87381745 -6.26567872E-83 .8117497381 .a1338803 2.86181571 113.887544
2.6561234 -5.20137654E-83 .6186977233 .811895411 2.0233181 115.931852
2.25701976 -4.31848929E-03 9.,74736764-93 .0186"12495 1,78786581 113.396362
2.4778764 -3.58545172E-83 8.88143782E-93 9.57785998E-83 1.95448981 111.984857

2.7185829 -2.97676581E-83 8.89243536E-03 8.62254503E-3 1.92327327 119.195481
2.98364729 -2.47131279E-43 7.3735257E-63 7.77664891E-83 1.89419826 168.529146
3.27454922 -2.85172729E-83 6.71848199E-03 7.82478364E-83 1.36718668 106.981955
3.59381373 -1.70338864E-83 6.12163857E-03 6.354289653E-03 1.34213788 185.549582
3.94429613 -1.41417663E-03 5.57788179E-03 5.75428246E-83 1.81916968 194.226829
4.32876137 -1.17407378E-83 5.88228524E-83 5.21613578E-83 1.79782662 183.897915
4.75881626 -9.74736682E-04 4.63978992E-93 4.73226358E-03 1.77825822 191.386727
5.2146684 -8.6924351IE-44 4.21946249E-83 4.29636451E-03 1.76828637 196.857816
5.72236778 -6.71848184E-14 3.8445624E-03 3.99282462E-03 1.74388221 99.9125428
6.23029158 -5.57789164E-94 3.58362297E-83 3.5471513-83 1.72869989 99.84717
6.89261226 -4.63679891E-04 3.19182324E-83 3.22524872E-83 1.71487396 98.2559756
7.56463344 -3.84456231E-64 2."827646E-93 2.93357183E-03 1.78222842 97.535389
8.38217587 -3.19182317E-84 2.64990773E-03 2.66996132E-83 1.69966924 96.3682463
9.11162777 -2.6499767E-84 2.41449723E-83 2.42899565E-83 1.68818876 96.2631754
16.866012 -2.19999992E-84 2.19999995E-83 2.21897261E-93 1.67946593 95.71863

Figure 19
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Figure 19 (Cont.)

* PROBLEM IDENTIFICATION -KATZ EXAMPLE
M~BODE PLT(AMPLITUDE)

ABSCISSA -)COMMON LOG OF FREQUENCY
ORDINATE ->COMMW~ON LOG OF AMPLITUDE
MINIMUM FREQUE74CY SHOWN ON ABSCISSA - .1 RADIANS/SEC
MAtXIMUMt FREQUENCY SHOWN ON ABSCISSA - 18 RADIANS/SEC
AMPLITUDE LIMITS OF BODE PLOT ARE *-60 DECIBELS

Figure 19
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Figure 19 (Cont.)

PROBLEM IDENTIFICATION - KATZ EXAMPLE
XX BODE PLOT (PHASE) X

ABSCISSA -> COMMON LOG OF FREQUENCY
ORDINATE-> PHASE (DEGREES)

TIC MARKS SHOW MULTIPLES OF 98 DEGREES
MINIMUM FREQUENCY SHOIN ON ABSCISSA = .1 RADIANS/SEC
MAXIMUM FREQUENCY SHOWN ON ABSCISSA - 10 RADIANS/SEC
MAXIMUM PHASE ON ORDINATE SCALE = IS0 DEGREES
MINIMUM PHASE ON ORDINATE SCALE - 98 DEGREES

Figure 19
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FREQUENCY RESPONSE
PROBLEM IDENTIFICATION - KATZ EXAMPLE

GAIN=-1 .917

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S

-. 1
-.9
I

NUMERATOR ROOTS ARE
REAL PART IMAGINARY PART

-.1 8

DENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF S

8
8
4.6225
4.3
l

DENOMINATOR ROOTS ARE
REAL PART IMAGINARY PART

-2.15 8
-2.15 8
8 0

Figure 20 Compensated System Frequency Response
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Figure 20 (Cont.)

PROBLEM IDENTIFICATION - KATZ EXAMPLE

RADIO) FREQ. REAL PART IlAGINRY P T K ITUDE PASE(RAD) PIASE(CEG)

.184761575 -2.39229771 -1.6W91537 2.91226675 -2.5347093 -145.277:,
.1149757 -2.851368a54 -1.59799532 2.54547622 -2.50797801 -143.69i148
.126185688 -1.76821783 -1.36634283 2.23461116 -2.48378669 -142.;35962
.13848837 -1.5329249 -1.23744316 1.9785693 -2.46245977 -141.33,W8I7
.151991199 -1.33732191 -1.11928564 1.74391164 -2.44471727 -140.87832
.16681654 -1.17461586 -1.11885445 1.54969324 -2.43998665 -139.285325
.18373829 -1.03916292 -. 911229404 1.38299273 -2.42169891 -138.753176
.299923391 -.926259956 -. 819533617 1.23676643 -2.41725149 -139.498353
.229513975 -. 83199732 -. 73517978 1.11816156 -2.41880932 -138.541263
.242912828 -. 753895 -. 656961126 .999370661 -2.42426292 -138.989883
.26560878 -. 68682384 -. 584718837 .92116563 -2.43632268 -139.591857
.291595398 -.639994245 -. 517 92353 .316122474 -2.45443313 -148.62871
.319926716 -.58348553 -.45538223 .7400899M -2.47882133 -142.826851
.351119176 -.542791741 -.397275798 .672572198 -2.59968973 -143.794681
.385=52862 -.U97412466 -.342966767 .612448866 -2.54721596 -145.944776
.422924291 -. 476358936 -. 292885857 .558777222 -2.59155943 -148.434955
.464158887 -. 44852822 -. 244322736 .518755483 -2.64281151 -151.421999
.569413886 -. 42304567 -. 199427917 .46769463 -2.79197883 -154.76@472
.559981023 -. 399156742 -. 157212169 .428995316 -2.76638484 -158.502233
.613599733 -. 376188516 -. 117559888 .394129581 -2.3870547 -162.S459"1
.673415072 -. 353595756 -. 8804242261 .36262655 -2.91795958 -167.86313
.739972211 -.33092379 -.6458343711 .334961632 -3.8395521 -172.11497
.8111-384 -.307735349 -.8138945796 .38848867 -3.89647228 -177.414856
.892150995 -. 283828366 .8152206099 .284236184 3.98891791 176.9:9457
.977969969 -. 259835071 .9412779193 .262393326 2.98356871 178.945956
1.87226724 -.233343053 .8641954395 .241962139 2.87387962 164.661232
1.17681197 -. 29688473 .6831222496 .222958741 2.75955236 158.!1076
1.29154968 -. 179948328 .9983768522 .29507688 2.64127174 151.331777
1.41747418 -.152928919 .199591363 .189141559 2.51979887 144.373892
1.567617 -. 12637755 .116715736 .112821842 2.39596163 137.278533
1.79735267 -. 19886423 .119814167 .15663175 2.27964179 138.898238
1.37391745 -.8770618877 .119135249 .141928356 2.14475823 122.85639
2.95651234 -. 9554563234 .11525922 .127996638 2.81924576 115.694391
2.25791976 -.036586795 .10862959 .114591277 1.89563025 198.577274
2.4778764 -.9294899189 .8999475468 .192026215 1.77389134 !91.5553
2.71858829 -7.51823915E-03 .9899511678 .9892633158 1.65399513 94.7664937
2.98364729 2.54491974E-43 .0793188393 .8793516584 1.53871942 38.1621603
3.27454922 9.37769396E-03 .86214773 .9693287529 1.4278337 81.308874
3.59381373 .814836698 .858352695 .8692147409 1.32183615 75.7356599
3.94428613 .9178187351 .9488619345 .8529095757 1.22119813 69.9643671
4.32876137 .8192341152 .8403426486 .8446931816 1.12599582 S4.5896745
4.75181026 .8194712689 .0328972762 .8382277 1.03636815 59.3795424
5.214484 .8188733774 .926533782 .9325614184 .952529207 54.575923
5.72236778 .8177264567 .821197358 .8276324635 .374333383 58.8956306
6.2929158 .0162567436 .9167939828 .0233734881 .891651719 45.9312765
6.89261226 .8146344848 .8132183683 .9197150191 .734297995 42.9721911
7.56463344 .8129813711 .0103277974 .116588521 .672943691 38.5952869
3.39217587 .9113794273 8.83199572E-13 .9139285434 .61463121 35.2157869
9.11162777 9.87985853E-83 6.21876925E-03 .8116741036 .561735189 32.1879273
tlM.ONI82 8.19595E-43 4.79675383E-93 9.76963383E-3 .5132213 29.495425

Figure 20
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m=w -7 -7.

* Figure 20 (Cont.)

PROBLEM IDENTIFICATION -KATZ EXAMPLE
KBODE PLOT (AMPLITUDE) ~

ABSCISSA -)COMMION LOG OF FREQUENCY
* . ORDINATE -)COMM1ON LOG OF AMPLITUDE

MINIMUMI FREQUENCY SHOWAN ON ABSCISSA - .1 RADIANS/SEC
MAIXIMUM1 FREQUENCY SHOWN' ON ABSCISSA - 10 RADIANS/SEC

4 AMPLITUDE LIMITS OF BODE PLOT ARE *-66 DECIBELS

Figure 20
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Figure 20 (Cont.)

PROBLEM IDENTIFICATION - KATZ EXAMPLE
MX BODE PLOT (PHASE) X1

I I I I II I

1.

ABSCISSA -) COMMON LOG OF FREQUENCY
ORDINATE -> PHASE (DEGREES)

TIC MARKS SHOW MULTIPLES OF 90 DEGREES
MINIMUM FREQUENCY SHOWN ON ABSCISSA - . 1 RADIANS/SEC
MAXIMUM FREQUENCY SHOWN ON ABSCISSA - 18 RADIANS/SEC
MAXIMUM PHASE ON ORDINATE SCALE - 188 DEGREES
MINIMUM PHASE ON ORDINATE SCALE - -188 DEGREES

Figure 20
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ROOT LOCUS
PROBLEM IDENTIFICATION - KATZ EXAMPLE

NUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S OR VV p
. -. 1-

OPEN-LOOP ZEROS
REAL PART IMAGINARY PART

"J-1 0

DENOMINATOR COEFFICIENTS - IN ASCENDING PONERS OF S OR N-
0"

0*

4.6225
4.3
I

OPEN-LOOP POLES
REAL PART IMAGINARY PART

.15 0
-2.15 "
o
0 0

MIN GAIN MAX GAIN
0 -30

OPTION TAKEN9I

SIGMA MIN = -1 SIGMA MAX = I
OMEGA MIN = -1 OMEGA MAX = I

Figure 21 Compensated System Root Locus
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Figure 21 (Cont.)

7

PROBLEM IDENTIFICATION - KATZ EXAMPLE
UK ROOT LOCUS PLOT XX

I a 
Ij I I I

4 +

ABSCISSA- REAL (IGA) AXIS

ORDINATE- IAGINARY (OEA) AXIS

TIC ARKS SHOWd INTERVALS OF I

THE PLOT FRAM1E LIITS 
ARE:

ABSCISSA, -8 TO 2

ORDINATE, -5 TO 5

~Figure 
21
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770 7

* Figure 21 (Cont.)

PROBLEM IDENTIFICATION -KATZ EXAMPLE
XX ROOT LOCUS PLOT ~

440

ABSCISSA -)REAL (SIGMA) AXIS
ORDINATE ->IMAGINARY (OMEGA) AXIS
TIC MARKS SHOW INTERVALS OF 1
THE PLOT FRAME LIMITS ARE:

ABSCISSA, -1 TO 2
ORDINATE, -1 TO 2

Figure 21
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VI. CONCLUSIONS AND RECOMMENDATIONS

This thesis demonstrates that common classical control

programs may be adapted to run on an inexpensive microcomputer

system. With the exception of the memory management problem

encountered, this was done with relative ease. This allows

more people access to these programs by introducing a new

group of computers on which they can be run. Also these

programs require no knowledge of any computer language or

input card formats making them easier to use than the

Fortran versions.

It is also demonstrated that the transfer function pro-

grams are a useful tool in the study of sampled data systems

as well as classical systems.

Only a sampling of five programs was converted in this

thesis. Other programs can and should be similarly converted

to run on microcomputer systems. There are programs in

existence for the same microcomputer system used in this

thesis that generate the aircraft stability derivatives.

An effort should be made to modify these programs and the

programs of this thesis to make them compatible and

complementary.
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APPENDIX A

DESCRIPTION OF MICROCOMPUTER SYSTEM

The microcomputer system used in developing this thesis

consisted of the following components:

Apple II plus computer (48K)

Disk II 5 1/4" floppy disk drive and controller card

USI 9" green screen monitor

NEC PC-8023A-C dot matrix printer

Grappler printer interface card

Add Ram 16K expansion card

The programming language used was Applesoft basic. All

graphs were generated using the High Resolution graphics

commands. In the High Resolution graphics mode a

matrix of dots 280 dots wide and 192 dots high can be dis-

played. The High Resolution page one is the only page used

in this thesis and it resides in memory in the 8,192-byte area

from $2000 to $3FFF. High Resolution page two resides in

the area from $4000 to $6000.

A memory management problem was encountered during the

programming of the programs requiring the use of the graphics

capabilities of the microcomputer system. To understand the

nature of the problem encountered a brief description of the

normal use of memory in the Apple II is necessary. An Apple-

soft program is normally loaded at memory location $800 and
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loads up. LOMEM is set to the end of the program. Simple

variables are stored from LOMEM upward as they are defined

in the program. This gives only 6K-bytes of RAM before there

is a conflict with the first High-Resolution page and only 14K

before there is a conflict with the second High-Resolution

page. [Ref. 8] Since the programs and variables in this

thesis exceed 14K, simply using High-Resolution page two in-

stead of one is not the answer. The first part of the solu-

tion was to get the Applesoft programs to load above the

space used by High-Resolution page one and in effect pro-

tecting that space from interference. This fix creates a

new problem. The disk operating system loads at the top of

the 48K of memory and sets HIMEM to $9CF8. String variables

start at HIMEM and build down. This allows 22K of space for

the program and all variables. Some programs in this thesis

require more space than this. Even with a 16K memory

expansion card installed the disk operating system will

ignore it so the added memory is useless. This final problem

was solved by using a utility program that relocated the disk

operating system into the higher memory provided by the

memory expansion card and resets HIMEM to $BFOO. This gives

32.5K of useable program space which is sufficient for all

programs in this thesis. (Ref. 9]
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